Math 4140. Lecture 8.

02.03.202

Facts on k[x] (to be used later) (1) kirj is a PID Explanation: The fact that KIX] is a PID can be deduced from the fact that it is a Enclideen domain, that is, it has a division algorithm with certain properties: a, b -> a = qb + r $\mathcal{G} = \chi(\chi^2 + 2\chi) - \xi \chi^2 + \chi$ Eq $a = x^3 - 6x^2 + x$ $= \chi (\chi^2 + 2\chi) - \delta(\chi^2 + 2\chi) + 1/\chi$ $b = \chi^2 + 2\chi = (\chi - \theta)(\chi^2 + 2\chi) + (\eta \chi)$ Eq. The ring (Z,t,.) is a Endidean domain under the usual division algorithm. Every ideal I in Z can be written as I=<N7 where n is the smadest positive number in I. Similarly, every rdial I E k [x] can be generated by the monit polynomial in I with the smallest degree.

(2) Quotients of k[x]

Pup. Let
$$A = k[x]$$
 and let I be an ideal in A .
Then A/I is fin. dim.
Pf: Say $I = \langle f 7 \rangle$ and deg $f = d$. Then
 $\{ 1, \chi, \chi^2, -\cdots, \chi^{d_1} \}$ is a basis for A/I .
Details: HW/Eg . [12].

Modules over rings.
$$\in$$
 (h.2.
Recall that a V.S. over a field K is an abelian gp (V, +)
with an action (scalar multiplication) $K \times V \rightarrow V$ satisfying certain properties/animy
of K
Replacing the field K with a ring R in the V.S. axioms
well admise always talk about left modules
same friendly,
 Dd_{Li} (EH. Def 2.1). A (left) module over a ring R is an abelian gp (M,+)
with an action of R, i.e., with a map $R \times M \rightarrow M$ satisfying the about that
(a) $Y \cdot (m+n) = Y \cdot m + Y \cdot n$ (the action of Y respects +)
 $Y \cdot (S \cdot m) = (rS) \cdot m$ (action of $Y = action of $Y = action f TS$)
 $M = M$ (action of the using rd = the rink action).$

that recurring theme": (see
$$P2$$
. of $Lec7.pdf$)
Prop: (Lemme 2.5) Let M be an R-module for a ring R.
If R I a k-algebra. then M Is a k-vector space.
Pf: Hw. Sume key rolea as before: think of k as embedded m
 $A:=R$ in $\Lambda \mapsto \chi \cdot 1A$, then try to show that $\Lambda m \in M$ $\forall m \in M$.

-1

(2). Z-modules. If
$$R = Z$$
, then an R -module 3 certainly an abelian gp
by def. On the other hand, given an abelian gp $\binom{M}{G}$, t , then we may
define
 $n \cdot a = \begin{cases} a + a + a + \cdots + a & \text{if } n > 0 & \text{if } n < 0 & \text{if } n <$

15). Direct products : new modules from old.

Now we consider some examples where the ring is an algebra.
(i). natural modules of matrix algebras
(i). The algebra
$$A = Mn(k)$$
. $E R$ The us. $V = R^n = \left\{ \begin{bmatrix} a_1 \\ \vdots \\ \vdots \\ \vdots \\ a_n \end{bmatrix} : a_i \in k \forall i \right\}$
is an A -module
The actim : $A \times V \rightarrow V$ matrix -vector multiplication $e_i^{\text{eff}} \begin{bmatrix} 1 & 2 \\ 3 & \psi \end{bmatrix} : \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : a_i \in k \forall i \end{bmatrix}$
(ii). The adjust $A = Mn(k)$ is properties of matrix -vector multiplication $e_i^{\text{eff}} \begin{bmatrix} 1 & 2 \\ 3 & \psi \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : a_i \in k \forall i \end{bmatrix}$
(ii). The adjust $A = Mn(k)$ is properties of matrix -vector multiplication $e_i^{\text{eff}} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : a_i \in k \forall i \end{bmatrix}$
(ii). The adjust $A = Mn(k)$ is properties of matrix -vector mult. $= \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} : \begin{bmatrix} a_1 \\ a_$

(7). natural modules of endomorphism deebra,
$$\overline{bnd}_{p}(v)$$
 (V)
The action : evaluation $\overline{bnd}_{p}(v) \times V \longrightarrow V$
 $(f, v) \mapsto f(v).$

The axioms:
$$HW$$
.
Note: This should be no surprise : We saw $End_{k}(U) \cong Mn(k)$
for $n = \dim V$. (an you describe the connection between E.g. 17)
and E.g. (6) more previely?
Thentify.

More examples next time.