Math 4140. Lecture 6.
Last time: Monorids (generalization of gps)
Monorid algebras
$$M \rightarrow kM$$
: basis: M , mult on basis = concat,
 J extend b: linearly
 $if \stackrel{N}{gp} \stackrel{is a}{gp} (M)$
 $if gp algebra G \rightarrow kG$.
 $n) free clyclone of a set X: monorid algebra
 df the free monorid $\langle X \rangle of X$.
 $X \rightarrow M = \langle X \rangle = b \langle X \rangle$.
 P acth clyclones of quivers. $Q \rightarrow kQ$: basis = $\{pachs on Q\}$, mult: induced from
concertenction.$

Examples of path algebra:
(1)
$$1 \leq d = 2$$

(1) $1 \leq d = 2$
(2) $1 \leq d = 2$
(3) $1 \leq d = 2$
(4) $1 \leq d = 2$
(5) $1 \leq d = 2$
(6) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(8) $1 \leq d = 2$
(9) $1 \leq d = 2$
(1) $1 \leq d = 2$
(1) $1 \leq d = 2$
(1) $1 \leq d = 2$
(2) $1 \leq d = 2$
(2) $1 \leq d = 2$
(3) $1 \leq d = 2$
(4) $1 \leq d = 2$
(5) $1 \leq d = 2$
(6) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(8) $1 \leq d = 2$
(9) $1 \leq d = 2$
(9) $1 \leq d = 2$
(9) $1 \leq d = 2$
(1) $1 \leq d = 2$
(2) $1 \leq d = 2$
(3) $1 \leq d = 2$
(4) $1 \leq d = 2$
(5) $1 \leq d = 2$
(5) $1 \leq d = 2$
(5) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(8) $1 \leq d = 2$
(8) $1 \leq d = 2$
(8) $1 \leq d = 2$
(9) $1 \leq d = 2$
(1) $1 \leq d = 2$
(1) $1 \leq d = 2$
(2) $1 \leq d = 2$
(2) $1 \leq d = 2$
(3) $1 \leq d = 2$
(4) $1 \leq d = 2$
(5) $1 \leq d = 2$
(5) $1 \leq d = 2$
(6) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(7) $1 \leq d = 2$
(8) $1 \leq d =$

(3).
$$\[mathcal{O}]{}$$
 Quertum: $\[mathcal{k}]{}$ $\[mathcal{k}]{$

Pmp. (Lemm 1.20) Let A be a K-algebra. Then
(1) Every left ideal
$$I \subseteq A$$
 is a K-subspace of A.
(2). If I is a proper two-sided ideal of A. then the factor ving
 $A|I is a K-algebra (Lits called the quotient/factor algebra of A
W.r.t. I). Why? "K embeds it A site $\lambda \mapsto \lambda \cdot 1A$ "
 $Pf(Isketch):$ (1). By def, I is a subgp and hence closed under addrive. So
 $Ft suffices to show it; closed under scalar mult : $\forall \lambda \in K$, $\forall c \in I$.
 $\lambda \cdot \chi \stackrel{def}{=} \lambda (1_A \cdot \chi) \stackrel{bel}{=} (\lambda \cdot 1_A) \cdot \chi \in I$.
(2). Hu/next the (recall that mult in A/I is given by $(a+I)(b+I) = ab + I$.$$

Examples of ideals and faith algebra) Let A be an algebra
(One-sided Principal ideals, Eq. 1.19. 12))
$$f \times \in A$$
.
 $(\chi)_{L} := \{a \cdot \chi \mid a \in A\}$ is a left ideal ; it's could the
principal left ideal generated by χ and cometimes just denoted $A\chi$.

In the path algebra kQ of a guver
$$Q = (Q_0, Q_1)$$
, for any
statumary path $e_a(a \in Q_0)$, the left principal ideal kQ-ea
can be described as the span of all paths starting at a. Anore
next time.