Math 4140. Lecture 2.
Last time: Axiomatic definition, of groups, vings, fields and vector spaces.
Today. Innear algebra review
. The free vector space on a set, via universal properties
1. Linear algebra review.
(1). We already say that a vector space is defined as an abelian
group (V,+) equipped with a well-behaved nap
$$k \times V \rightarrow V$$
, (c, v) \mapsto civ
. Satisfying properties (a)-(d) from the last page of Leuture 1.

You should be very comfortable with base linear algebra: Vectory, natrices,
Vector/matrix anthmetic, determinants, linear maps, bases, etc.
V
Eq. (
$$[\mathbb{R}^n, +)$$
 forms a V.S. over $(\mathbb{R},$
eq. $n=3$.
 $2 \cdot \begin{bmatrix} z \\ z \\ -3 \end{bmatrix} = \begin{bmatrix} z \\ 4 \\ -b \end{bmatrix}$ arbitistic ($a+bi$).
 $c \in \mathbb{R}$ $v \in V = \mathbb{R}^3$
 0 $(\mathbb{R}^n, +)$ $T = V.S.$ over \mathbb{R} . of course, $\mathbb{R} = \mathbb{C}$ T arbitistic
 $\mathbb{C} \in \mathbb{R}$ $v \in V = \mathbb{R}^3$
 0 $(\mathbb{R}^n, +)$ $T = V.S.$ over \mathbb{R} . of course, $\mathbb{R} = \mathbb{C}$ T arbitistic
 $\mathbb{C} = \begin{bmatrix} c \\ -3 \end{bmatrix} = \begin{bmatrix} z \\ -4 \\ -b \end{bmatrix}$
 $\mathbb{C} = \begin{bmatrix} c \\ -b \end{bmatrix}$ $\mathbb{C} = \mathbb{C}$
 $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$
 $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C}$
 $\mathbb{C} = \mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C} = \mathbb{C}$ $\mathbb{C} = \mathbb{C} = \mathbb{C}$
 $\mathbb{C} = \mathbb{C} =$

(f) Mu(k), the set of nxn matrices over a field k, forms
(t,) a vector space over k.
eg. Mu(IR), typical etts:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

 $f: \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$
Scalar mutt: $7 \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 24 & 28 \end{bmatrix}$.
In fact, we'll see that Mu(k) D more: we can also mu(typly
eth of Mu(k) (not something you can always do for s.s. think (R³)

etts of Mark) (not smethy you can always do for s.s. think and the multiplication vill actually make Mark) an algebra.

More familiar notions: Fix a ground field k.
(1). Linear map: A linear map between two k vector spaces
$$Y_1, V_2 = 0$$
 a
map $f: V_1 \rightarrow V_2$ s.t. $\begin{cases} G_1 & f(V_1 + V_2) = f(V_1) + f(V_2) & V_2 + V_1 \\ 15 & f(C,V) = C + f(V_1) & V_2 + V_1 \end{cases}$
(2). Basis: A bais of a k-vector space V $D = c + f(V_1) & V_2 + V_1 \\ 15 & f(C,V) = c + f(V_1) & V_2 + V_1 \end{cases}$
s.t. $\begin{cases} G_1 & G_2 & G_2 & V_1 \\ 0 & G_2 & G_2 & V_1 \end{cases}$, i.e., every eit $M V = 0$ a lin. comb of eths. of B.
(a) B (pary V, i.e., every eit $M V = 0$ a lin. comb of eths. of B.
(b) B D linearly independent : $G(V_1 + \cdots + G(V_1 = 0) = C_1 = \cdots = C_n = 0$.
Ni $\in B_1, C \in R \end{cases}$

(3) Dimension:

More on bases :

Recall that the behavior of a v.s. is often "controlled" by the behavior
of any chosen basis of it:
Eq. 1). (deconp.) Let V be a V.s. and
$$B \leq V \in basis of V$$
. Then every
elt X $\in V$ has a unique decomposition $X = \sum_{v \in B} c_v V$
vers V has a unique decomposition $X = \sum_{v \in B} c_v V$
o) (lower map.) Let $f: V \rightarrow W$ be a low map and B a basis of V.
Then the image of the basis vectors determine the behavior of f on V.
eff $X = \sum_{v \in B} c_v V \implies \int c(x) = f(\sum_{v \in B} c_v V) = \sum_{v \in B} f(c.v) = \sum_{v \in B} f(v)$

Def.
$$(X \rightarrow KX)$$
 Given a set X, we can define a u.s. KX as the
set $\frac{1}{1}$ inter combinations of etts of X, where we view X as a basis.
eq. $X = \{A, B\}$, $k = R$, $\rightarrow KX = \{C, A + C_2B\}$ $C_1, C_2 \in IR\}$
 $+ : (C_1A + C_2B) + (d, A + d_2B)$
 $= (C_1 + d_2)A + (C_2 + d_2)B$
 $: d_2 (C_1A + C_2B) = (d_2)A + (d_2)B$.
Important: The set X is linearly index and a basis by definition.

Def. (the free vector space on a set) Let X be a set.
A free sector space on X means a V.S. V equipped with an
migetive map
$$i: X \neg V$$
 s.t.
for any vector price W and set map $f: X \neg W$, there is
a unique linear map $f: V \neg W$. st. $f = f \circ i$.
Find (set dearchin) Proper KX is a free u.s. on X.
 $f: X \rightarrow W$ (set dearchin) $p_{f:}$ Take $i: X \neg V = KX$ to be the map with
 $i \bigvee i \exists ! f$ linear map $i(x) = x \in KX$. $\forall x \in X$.
Now we need to show we can alwapp first f
form f .

$$f: X \to W$$
(1) We'll fint assume we ver find \overline{f} and
$$f: X \to W$$
(1) We'll fint assume we ver find \overline{f} and
$$f: Y \to W$$
(1) Show that \overline{f} is unique:
$$f: Y = \frac{1}{2} \int \frac{$$