Math 4140/5140. Abstract Algebra II.

Course Information.

Instructor: Tranquen Xu (Eddy)

Topic: Algebras and Representation Theory

Website: https://math.colorado.edu/~tixu6187/aa2.html

- has Canvas Lmk

- leuture notes & HW posted under "LECTURES" tas

Office Hours: Mondays. 10-1/am, + appointments.

Grading: Hw 30%, Midterm 30%. Final 40%.
take-home take-home Hw: — to be submitted on Canvas/Assignments, pdf only
- due on Wednesday nights (1:59 pm.
(the deadline is start; no late submission possible)
- HWI due on Jan 27.
- posted the previous Wed. Jan 20.
Textbook: Algebras and Representation Theory by Erdmann & Holm.
- free, available at Cu library or Canvus/Files

0n	to	math
		: Review; Groups

axiomatre def. of groups, rings, fields, and verter spaces; linear algebra

Def. A group (gp) is a pair (G,.) where GD a set and . is an operation s-t. (such that) the following holds:

(0). (Closure): • i) a nop • : $G \times G \rightarrow G$. that is, $fa.b \in G$, thereis an ext a.b in G (equiv., • D a binary operation on G.) (1). (Associativity): f(a,b), $c \in G$, (a,b). c = a.(b.c)

(2). (Identity): Gho, an est e st. e.a=a=a.e ta=G. $ab = e = b \cdot \alpha$. (3). (| Werse) : 4a = 6, 76 = 6

Recall that (G, ·) of called abelian if a.b=b.a Va.b & G. Examples: (Z, +), (GL, +) form abelian gps.
Usual addition (IN, +) I) not a SP since the overse axiom fails. important $R = \frac{\mathbb{Z}_{20}}{S_n}$ Symmetric gps $A_n \rightarrow alternating gps$ Remark: Well assume familiarry with the basic notions and facts of gp theory: subgps. Lagrange's Thm, gp homomorphisms, | Somorphism That, gp actions,

Remark: (Additive notation vs multiplicative notation.)

Sometimes we denote the Sinary op. on a SP G by $+ \rightarrow$ additive $\rightarrow 3+5=6$.

and sometimes by \cdot , \times , or juxtaposition (ab) \rightarrow multiplicative.

In \geq , if we write $+ a_1 \times$, then 3*5=8.

Questions?

Rings

Def. A ring is a triple (R, t, \cdot) where R is a set st. (R, t) is an adeban (3) I an ext in R, denoted by o. It. orr=r=r+0 \text{ } \ "the unit" (4) YaeR, Fanest b. It. atb = 0 = b+a 15) atb= 5+a y a.b & R 19). I an elt in R, 1, st. 1+0, a.1 = a = 1.a ta ∈ R. Interation of t and (b) . 1) a binary op on R 17). (a.b). C= a.(b.c) \ d.b. c ∈ R (atb)-c= a-1+ b-c fa.b. c & R. (8) () justicibuturity) a. (beu) = ab + a. c

Rok: (a) In our course, we alway helide an axiom for our rings (9). R has an ext, 1, s.t 1. $a = a = a \cdot 1$ $\forall a \in \mathbb{R}$. In other words, we always assume our riggs to be instal. (b) A ring Ri) commutation if ab = b-a Ha, b & R. (c) One can show that (HW) Ma (un. Fel) ring R, (i). $0 \cdot r = 0 = r \cdot o$ $\forall r \in \mathbb{R}$.) $r = r \cdot | = r \cdot o = o \forall r$ (ii). If 1 = o, then $\mathbb{R} = [o]$, which D why we given $I \neq v$

3. Field,

Def 1. A field is a triple (F, t, .) satisfying a familiar set of arams (see Wikipedia (Ca(calus books).)

Def 2. A field 15 ~ triple $(F, +, \cdot)$ st. (F, +) i) an abelian gp, $(F|\{0\}, \cdot)$ i) an abelian gp and \cdot distributes over +.

Def 3. A field of a commutatible ring (Fit.) where every nonzero est is invertible multiplicatively.

 $\forall a \in T \setminus \{io\}$, $\exists b$ st. ab = 1 = ba.

Exercise: Convince yourself that the three definitions are equivalent. Examples: (Z,+,·)? X. (IR, +, ·), (Q, +, ·) Mn(IR), N22? X. I also, not every nonzero matrix is invertible.

The one thing, . is not commutative.

GLn (IR), nzz? X

4. Vector spaces Let k be a field. Def. A vector space over k is an abelian gp (V, +) eproposed with a map $\cdot : k \times V \longrightarrow V$, $(C, V) \longmapsto C \cdot V$ st. "action of k on V by scaling" 15). C. (U+V) = C. U+ C.V the action > well-behaved". (c). (c+d). u= c·u+d·u (d). $(c,d) \cdot u = c \cdot (d \cdot u)$ More review next time...