## Math 3140. Homework 9

due Wednesday, Oct. 30

(1) Let $G$ be a group and let $X$ be a set. In class we showed that the data of a group action $A: G \times X \rightarrow X$ is equivalent to the data of a group homomorphism $\Phi: G \rightarrow S_{X}$, where $S_{X}$ is the symmetric group on $X$. We proved that a group action $A$ naturally gives rise to a group homomorphism $\Phi_{A}$, and described how a group homomorphism $\Phi$ naturally gives rise to a map $A_{\Phi}$. Recall the definition of $A_{\Phi}$, then prove that $A_{\Phi}$ is a group action.
(2) When proving Cayley's theorem we used the "obvious" fact that $G /\left\{1_{G}\right\} \cong$ $G$ for any group $G$. Prove this fact.
(3) Consider the group $G=\{e, a, b, c\}$ with the following multiplication table (where the entry in Row $x$, Column $y$ equals $x y$ ).

|  | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| e | e | a | b | c |
| a | a | e | c | b |
| b | b | c | e | a |
| c | c | b | a | e |

(a) Recall from the last homework that up to isomorphism $G_{1}=\mathbb{Z} / 4 \mathbb{Z}$ and $G_{2}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ are the only two groups of order 4 . Which of $G_{1}$ and $G_{2}$ is $G$ isomorphic to, and why?
(b) Relabel the elements $e, a, b, c$ of $G$ as $1,2,3,4$, respectively, and identify $S_{G}$ with $S_{4}$ (as we did for the symmetric group $S_{3}$ in class). Consider the action of $G$ on itself by left translation and the corresponding homomorphism $\Phi: G \rightarrow S_{4}$. Write down $\Phi(b)$ in cycle notation.
(c) Now consider the action of $G$ on itself by right translation, i.e., the action $G \times G \rightarrow G,(g, x) \mapsto x g^{-1}$. Let $\Psi: G \rightarrow S_{4}$ be the group homomorphism associated to this action. Write down $\Psi(g)$ in cycle notation for all $g \in G$.
(4) Let $G$ be a group and let $H \leq G$. The left translation action of $G$ on the set $G / H$ gives rise to a homomorphism $\varphi: G \rightarrow S_{G / H}$. What elements form the kernel of $\varphi$ ? Your answer should be of the form "For $g \in G, g \in \operatorname{Ker} \varphi$ if and only if ...".
(5) Let $G=S_{4}$ and let $X=\{(12)(34),(13)(24),(14)(23)\} \subseteq G$.
(a) Explain why $X$ is a conjugacy class in $G$.
(b) Since $X$ is a conjugacy class in $G, G$ acts on $X$ by conjugation $(g, x) \mapsto$ $g x g^{-1}$, so we may consider the associated group homomorphism $\Phi$ : $S_{4} \rightarrow S_{X}\left(\cong S_{3}\right)$. Prove that $\Phi$ is surjective. You may want to relabel the elements of $X$ like in Problem 2(b).
(c) Use the first isomorphism theorem to compute $|\operatorname{Ker} \Phi|$.
(d) Prove that $\operatorname{Ker} \Phi=\{e\} \cup X$. (Try to do this using just facts about general groups, without computing any actual composition of permutations. Also, note that $\operatorname{Ker} \Phi \cong G$ where $G$ is as in Problem 3!)

