Math 3140. Homework 7

due Wednesday, Oct. 16

(1) Determine if each of the following maps $f: A \rightarrow B$ is well-defined. Explain your reasoning.
(a) Let $A=\mathbb{Q}, B=\mathbb{Z}$. To define $f(q)$ for $q \in \mathbb{Q}$, write $q=m / n$ for integers m, n, then set $f(q)=n$.
(b) Let A be the collection of similarity classes of matrices in Mat $\operatorname{Max}_{2}(\mathbb{R})$, so that each element in A is a set consisting of matrices similar to a given matrix. Let $B=\mathbb{R}$. To define $f(C)$ for $C \in A$, pick a matrix $M \in C$, then set $f(C)=\operatorname{det} M$.
(c) Let A to be the set of conjugacy classes of a group G, and let $B=$ $\mathbb{Z}_{>0} \cup\{\infty\}$. To define $f(C)$ for a conjugacy class in A, pick an element $g \in C$ and set $f(C)=|g|$.
(2) Let $n \geq 2$. In class we proved that $\left|A_{n}\right|=\left|S_{n}\right| / 2$ by the first isomorphism theorem. Here's an alternative proof: Let B_{n} be the set of all odd permutations in S_{n}. Prove that the map $f: A_{n} \rightarrow B_{n}$ defined by $f(\sigma)=(12)(\sigma)$ is a bijection, then conclude (explain why) that $\left|A_{n}\right|=\left|S_{n}\right| / 2$.
(3) The third isomorphism theorem states that if H, K are normal subgroups of a group G with $H \subseteq K$, then

$$
\frac{G / H}{K / H} \cong G / K
$$

Prove the theorem.

