Math 3140. Homework 6

due Wednesday, Oct. 9

(1) Determine whether each of the following maps $\varphi_{i}: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ is a group homomorphism (as always, when we mention $\mathrm{GL}_{n}(\mathbb{R})$, we assume implicitly that the group operation is matrix multiplication). For each map, justify your answer by either invoking the appropriate facts from linear algebra or giving a counter-example involving only 2×2 matrices.
(a) $\varphi_{1}(A)=A^{t}$, the transpose of A, for all $A \in \mathrm{GL}_{n}(\mathbb{R})$.
(b) $\varphi_{2}(A)=A^{-1}$ for all $A \in \mathrm{GL}_{n}(\mathbb{R})$.
(c) $\varphi_{3}(A)=\left(A^{-1}\right)^{t}$ for all $A \in \mathrm{GL}_{n}(\mathbb{R})$.
(d) $\varphi_{4}(A)=A^{2}$ for all $A \in \mathrm{GL}_{n}(\mathbb{R})$.
(2) Let $\varphi: G_{1} \rightarrow G_{2}$ be a group isomorphism. Show that $|\varphi(a)|=|a|$ for all $a \in G_{1}$ (even if $|a|=\infty$).
(3) An automorphism of a group G is an isomorphism $\varphi: G \rightarrow G$.
(a) Prove that the $\operatorname{Aut}(G)$, the set of automorphisms of a group G, forms a group under composition.
(b) For each $g \in G$, let $\varphi_{g}: G \rightarrow G$ be the conjugation map defined by $\varphi_{g}(a)=g a g^{-1}$ for all $a \in G$. Show that $\varphi_{g} \in \operatorname{Aut}(G)$ for all $g \in G$.
(c) Prove that the map $\Phi: G \rightarrow \operatorname{Aut}(G)$ given by $\Phi(g)=\varphi_{g}$ is a group homomorphism.
(d) The kernel of Φ is of course a normal subgroup of G. What is this group? (Hint: it's a notion we've mentioned in homework and in class.)
(4) Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism.
(a) Prove that for any subgroup $H \leq G_{1}$, the set

$$
\varphi(H)=\{\varphi(h): h \in H\}
$$

is a subgroup of G_{2}.
(b) Prove that for any subgroup $H^{\prime} \leq G_{2}$, the pre-image

$$
\varphi^{-1}\left(H^{\prime}\right):=\left\{a \in G_{1}: \varphi(a) \in H^{\prime}\right\}
$$

is a subgroup of G_{1}. Note that here φ^{-1} is not a map taking an element to an element, but a map taking a set to a set; it makes sense even if φ is not bijective.
The point of this exercise: the image of a subgroup via a homomorphism is always a subgroup, as is the pre-image of a subgroup via a homomorphism.

