Math 3140. Homework 5

due Wednesday, Oct. 2

Note: As usual, justify all your answers.

(1) Find a group G, a subgroup H of G and an element g of G such that the coset $g H$ is not a subgroup of G.
(2) Let G be a group and let H, K be subgroups of G such that $\operatorname{gcd}(|H|,|K|)=1$. Prove that $H \cap K=\left\{1_{G}\right\}$.
(3) Let G be a group of order 4. Prove that either G is generated by a single element or $g^{2}=1$ for all $g \in G$.
(4) When you divide 31^{2019} by 12 , what is the remainder?
(5) Consider the elements $a=(12)(345)$ and $b=(13)(456)$ in S_{6}.
(a) Find an element $g \in S_{6}$ such that $b=g a g^{-1}$.
(b) Find the size of the conjugacy class of a in S_{6}.
(6) Describe the conjugacy classes of S_{5}, then compute the size of each class.
(7) Consider the dihedral group D_{5}. Recall that each element of the group can be written in the standard form, either as $a_{i}:=r^{i}$ for some $0 \leq i \leq 4$ or as $b_{i}:=s r^{i}$ for some $0 \leq i \leq 4$ (see Problem 1 of Homework 3).
(a) Let $0 \leq i, j \leq 4$. Compute the standard form of $a_{i} a_{j} a_{i}^{-1}, a_{i} b_{j} a_{i}^{-1}, b_{i} a_{j} b_{i}^{-1}$ and $b_{i} b_{j} b_{i}^{-1}$.
(b) Compute the conjugacy classes of D_{5}.
(8) Prove that the center of a group G is always a normal subgroup of G.
(9) Find all subgroups of the symmetric group S_{3}, then determine which of the subgroups are normal.

