Math 3140. Homework 4

due Wednesday, Sept. 25

Note: Justify all your answers. For some problems in this homework, you may want to use the following fact. (You don't have to prove it.)

Proposition. For any positive integers m, n, there exists integers a, b such that $a m+b n=\operatorname{gcd}(m, n)$, the greatest common divisor of m and n.
(1) Find all elements of order 2 in S_{4}.
(2) Find all elements of order 2 in the dihedral group D_{4}.
(3) Find all elements of order 2 in the dihedral group D_{n} where $n \in \mathbb{Z}_{\geq 3}$.
(4) Find all generators of the cyclic group $\mathbb{Z} / 8 \mathbb{Z}$.
(5) Let G be a group and let $a \in G$. Suppose a is of finite order k for some $k \in \mathbb{Z}_{>0}$. Show that for any $n \in \mathbb{Z}$, we have $\left\langle a^{n}\right\rangle=\left\langle a^{\operatorname{gcd}(k, n)}\right\rangle$.
(Hint: to show the two sets are equal, show that they contain each other. One direction is easy; use Proposition 1 for the other one.)
(6) Let $m, n \in \mathbb{Z}$. Find a generator for the subgroup $\langle m\rangle \cap\langle n\rangle$ of $(\mathbb{Z},+)$.
(7) Recall that we claimed in class that for any $n \in \mathbb{Z}_{>1}$, the set $U_{n}:=\{1 \leq$ $k \leq n: \operatorname{gcd}(k, n)=1\}$ forms a group under multiplication modulo n. Prove this claim.

