MATH 3140. HOMEWORK 3

due Wednesday, Sept. 18

Note: Unless otherwise specified, you should justify your answer for each problem, even if it starts with "describe ..." or "find ...".

- (1) Let $n \in \mathbb{Z}_{\geq 3}$, let P_n be a regular *n*-gon in a plane, and label the vertices of P_n counter-clockwise by $1, 2, 3, \dots, n$. Let D_n be the associated dihedral group—the group of symmetries of P_n .
 - (a) Let r be the counter-clockwise rotation by $2\pi/n$ in the plane P_n is in, and let s be the reflection in the plane across the perpendicular bisector of the edge 1-2 of P_n . Explain why the list

 $1, r, r^2, \cdots, r^{n-1}, s, sr, sr^2, \cdots, sr^{n-1}$

is a complete and non-redundant list of the elements of D_n .

- (b) Prove that $rs = sr^{-1}$.
- (c) Prove that D_n is not abelian.
- (d) Let us call the expressions in the list from Part (a) the standard forms of the elements of D_n . Write down the multiplication table of D_4 , where you represent each element in its standard form. You don't need to show your computation for this problem.
- (e) Using their standard forms, describe the elements of order 2 in D_n for a general number n.
- (2) Let G be a group and let $H \subseteq G$. Prove that H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.
- (3) Let $n \in \mathbb{Z}_{\geq 2}$, let S_n be the symmetric group on n letters, and let

 $A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}.$

- (a) Prove that A_n is a subgroup of S_n . You may use the result of the previous problem if you want. (Here A_n is called an *alternating group*.)
- (b) Find the elements of A_3 .
- (4) Let G be a group. The *center* of G is defined to be the set

 $C_G := \{ a \in G : ab = ba \text{ for all } b \in G \}.$

- (a) Prove that C_G is a subgroup of G.
- (b) Prove that C_G is abelian.
- (5) Find the center of the dihedral group D_4 .