MATH 3140. HOMEWORK 2

due Wednesday, Sept. 11

Let n be a positive integer throughout the problem set.

- (1) Consider the subset $G = \{ \sigma \in S_n : \sigma(1) = 1 \}$ of S_n .
 - (a) Prove, by checking the group axioms, that G forms a group under composition.
 - (b) Find the order of G (your answer should involve n).
- (2) Now assume $n \ge 4$, let $A = \{1, 2, 4\}$, and let $G = \{\sigma \in S_n : \sigma(a) \in A \text{ for all } a \in A\}.$
 - (a) Prove that G forms a group under composition.
 - (b) Find the order of G.
- (3) For each element of S_5 below, first write it in the disjoint cycle notation, then write it as a product of basic transpositions.

 $\sigma_0 = \underline{12345}, \quad \sigma_1 = \underline{13245}, \quad \sigma_2 = \underline{35412}, \quad \sigma_4 = (132)(1435).$

- (4) Let $\sigma = (123)(145) \in S_5$. Write σ^{99} in the disjoint cycle notation.
- (5) Prove that S_n is abelian if and only if n < 3.
- (6) Prove that the set $\{(1k) : 2 \le k \le n\}$ generates S_n . Feel free to invoke any results we have proved in class, but if you do, point out clearly what results you are using.
- (7) Recall from class that the order of a permutation $\sigma \in S_n$ is given by the least common multiple of the sizes of the cycles in its cycle decomposition. Find the largest order an element of S_5 can have, and find an element with that order.