MATH 3140. HOMEWORK 13

due Wednesday, Dec. 11.

Note: Throughout the following problems, assume R is a ring.

- (1) Prove that if R is unital, then an invertible element in R has a unique inverse.
- (2) Let $a, b \in R$. Prove that
 - (a) (-a)b = -(ab) = a(-b);
 - (b) (-a)(-b) = ab.
- (3) Let $n \in \mathbb{Z}_{\geq 1}$. We claimed in class that $M_n(R)$, the set of $n \times n$ matrices with entries from R, is also a ring with the "usual" addition and multiplication. Prove this claim. (Be careful not to make extra assumptions such as R is \mathbb{R} or R is commutative.)
- (4) Let I, J be ideals in R.
 - (a) Show that the set $I + J := \{i + j : i \in I, j \in J\}$ is an ideal in R.
 - (b) Show that the set $I \cap J$ is an ideal in R.
 - (c) Suppose $R = \mathbb{Z}$ and $I = m\mathbb{Z}, J = n\mathbb{Z}$ for some nonzero integers m, n. What is I + J and what is $I \cap J$?
- (5) Let R be a unital ring. Recall that a ring homomorphism between two unital rings is required, by definition, to send unity to unity.
 - (a) Prove that if a map $\varphi : \mathbb{Z} \to R$ is a ring homomorphism, then it is *necessarily* given by $\varphi(n) = n1$ for all $n \in \mathbb{Z}$.
 - (b) Show that the map $\varphi : \mathbb{Z} \to R, n \mapsto n1$ is indeed (*sufficient* to be) a ring homomorphism. (Thus, every unital ring admits a homomorphism from $\mathbb{Z}!$)
- (6) Determine if the following maps are ring homomorphisms.
 - (a) The map $f : \mathbb{Z} \to \mathbb{Z}$ with f(n) = 2n for all $n \in \mathbb{Z}$.
 - (b) The "formal differentiation map" $d : \mathbb{R}[x] \to \mathbb{R}[x]$, i.e., the unique group homomorphism from $\mathbb{R}[x]$ to $\mathbb{R}[x]$ with d(1) = 0 and $d(x^n) = nx^{n-1}$ for all $n \in \mathbb{Z}_{\geq 1}$.
 - (c) The determinant map det : $M_2(\mathbb{R}) \to \mathbb{R}$ which takes the determinants of matrices in $M_2(\mathbb{R})$.
 - (d) The map eval₃ : $R \to \mathbb{R}$, where R is the ring of all continuous functions of the form $f : \mathbb{R} \to \mathbb{R}$ and $eval_3(f) = f(3)$ for every such function f.
- (7) Prove that $\mathbb{R}[x]/(x^2-1) \cong \mathbb{C}$, where x is a variable over \mathbb{R} .