## Math 3140. Homework 13

due Wednesday, Dec. 11.
Note: Throughout the following problems, assume $R$ is a ring.
(1) Prove that if $R$ is unital, then an invertible element in $R$ has a unique inverse.
(2) Let $a, b \in R$. Prove that
(a) $(-a) b=-(a b)=a(-b)$;
(b) $(-a)(-b)=a b$.
(3) Let $n \in \mathbb{Z}_{\geq 1}$. We claimed in class that $M_{n}(R)$, the set of $n \times n$ matrices with entries from $R$, is also a ring with the "usual" addition and multiplication. Prove this claim. (Be careful not to make extra assumptions such as $R$ is $\mathbb{R}$ or $R$ is commutative.)
(4) Let $I, J$ be ideals in $R$.
(a) Show that the set $I+J:=\{i+j: i \in I, j \in J\}$ is an ideal in $R$.
(b) Show that the set $I \cap J$ is an ideal in $R$.
(c) Suppose $R=\mathbb{Z}$ and $I=m \mathbb{Z}, J=n \mathbb{Z}$ for some nonzero integers $m, n$. What is $I+J$ and what is $I \cap J$ ?
(5) Let $R$ be a unital ring. Recall that a ring homomorphism between two unital rings is required, by definition, to send unity to unity.
(a) Prove that if a map $\varphi: \mathbb{Z} \rightarrow R$ is a ring homomorphism, then it is necessarily given by $\varphi(n)=n 1$ for all $n \in \mathbb{Z}$.
(b) Show that the map $\varphi: \mathbb{Z} \rightarrow R, n \mapsto n 1$ is indeed (sufficient to be) a ring homomorphism. (Thus, every unital ring admits a homomorphism from $\mathbb{Z}$ !)
(6) Determine if the following maps are ring homomorphisms.
(a) The map $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(n)=2 n$ for all $n \in \mathbb{Z}$.
(b) The "formal differentiation map" $d: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$, i.e., the unique group homomorphism from $\mathbb{R}[x]$ to $\mathbb{R}[x]$ with $d(1)=0$ and $d\left(x^{n}\right)=n x^{n-1}$ for all $n \in \mathbb{Z}_{\geq 1}$.
(c) The determinant map det : $M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ which takes the determinants of matrices in $M_{2}(\mathbb{R})$.
(d) The map eval ${ }_{3}: R \rightarrow \mathbb{R}$, where $R$ is the ring of all continuous functions of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\operatorname{eval}_{3}(f)=f(3)$ for every such function $f$.
(7) Prove that $\mathbb{R}[x] /\left(x^{2}-1\right) \not \not \mathbb{C}$, where $x$ is a variable over $\mathbb{R}$.

