Math 3140. Homework 11

due Wednesday, Nov. 20

(1) Consider the symmetric group $G=S_{4}$.
(a) Find a 2-Sylow subgroup P of G.
(b) Find all subgroups of G which have order 2. For each such group H, find an element $g \in G$ such that $g H g^{-1} \subseteq P$, where P is the group you found in (a).
(c) Find two subgroups H_{1}, H_{2} of G of order 3, then find an element $g \in G$ such that $g H_{1} g^{-1}=H_{2}$.
(d) Explain why the existence of H_{1}, H_{2} implies that G has exactly four subgroups of order 3 .
(2) Let G be a group of order $p q$ where p, q are primes, $p<q$ and $p \nmid q-1$.
(a) Prove that G has a unique subgroup P of order p and a unique subgroup Q of order q.
(b) Show that both P and Q are normal in G.
(c) Show that $P \cap Q=\{1\}$.
(d) State the second isomorphism theorem, then use it to deduce from (c) that $P Q=G$.
(e) Prove that $G \cong \mathbb{Z} /(p q) \mathbb{Z}$. Make sure you explain every step.
(3) Let G be a group, let p be a prime dividing $|G|$, and let P be a p-Sylow subgroup of G. Prove that the number of subgroups of G conjugate to P is not divisible by p.
(4) Let G be a finite group, and X a finite G-set.
(a) Prove that

$$
|X|=\left|X^{G}\right|+\sum_{x_{i}} \frac{|G|}{\left|\operatorname{Stab}_{G}\left(x_{i}\right)\right|}
$$

where $X^{G}=\{x \in X: g \cdot x=x$ for all $g \in G\}$ and the sum is over representatives of the G-orbits in X which have more than one elements, with one representative x_{i} from each orbit. (This recovers the class equation when we consider the conjugate action of G on itself.)
(b) Now suppose that G is a p-group for some prime p. Use the equation from (a) to prove that $|X| \equiv\left|X^{G}\right|(\bmod p)$.

