due Wednesday, Nov. 13

(1) Let G be a group and let X, Y be G-sets. We say a map $f: X \to Y$ is G-equivariant if

$$f(g \cdot x) = g \cdot f(x)$$

for all $x \in X$ and $g \in G$. Prove that for any $x \in X$, the bijection between $G/\operatorname{Stab}_G(x)$ and $\operatorname{Orb}_G(x)$ from the orbit-stabilizer theorem is in fact an G-equivariant bijection.

- (2) Let G be a group and let X be a G-set.
 - (a) Prove that for any $g \in G$ and $x \in X$, we have $\operatorname{Stab}_G(g \cdot x) = g \operatorname{Stab}_G(x) g^{-1}$.
 - (b) Prove that for any conjugate elements $g, h \in G$, say with $g = aha^{-1}$, we have $\operatorname{Fix}(g) = a \cdot \operatorname{Fix}(h)$ where $a \cdot \operatorname{Fix}(h) = \{a \cdot x : x \in \operatorname{Fix}(h)\}.$
- (3) Let G be a group.
 - (a) Prove that for any subgroup H of G and any $g \in G$, the set gHg^{-1} is another subgroup of G.
 - (b) Let S be the collection of subgroups of G. Prove that the map $G \times S \to S, (g, H) \mapsto gHg^{-1}$ defines an action of G on S. We call this action conjugation on subgroups.
 - (c) The stablizer of $H \leq G$ under the above conjugation action is called the *normalizer* of H and denoted by $\operatorname{Norm}_G(H)$. Prove that $H \subseteq \operatorname{Norm}_G(H)$ for any $H \leq G$.
 - (d) Prove that the orbit of a subgroup H has size 1 if and only if H is normal in G.
- (4) Compute the following numbers.
 - (a) The size of the conjugacy class of $\sigma = (142)(36)$ in S_6 .
 - (b) The number of flags with 7 vertical stripes of equal width, each of color red, white, or blue. As in class, identify two flags if one of them can be flipped to obtain the other.
 - (c) The number of necklaces with 6 beads, of which 2 are red , 2 are white, and 2 are blue. Identify two necklaces if one of them can be rotated to obtain the other.
 - (d) The number of bracelets with 7 beads, of which 2 are red , 2 are white, and 3 are blue. Identify two bracelets if we can obtain one of them from the other by a sequence of rotations and flips.