Math 3140. Homework 1
 due Wednesday, Sept. 4

(1) Determine if each of the following sets forms a group under the specified operation. If not, point out one group axiom that fails and why it fails.
(a) The set of odd integers, under usual addition.
(b) The set $\mathbb{Q}_{>0}$ of positive rational numbers, under usual multiplication.
(c) The set $\mathbb{R}[t]$ of polnomials in one variable with real coefficients, under multiplication.
(d) The set of all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, under addition.
(e) The set of permutations $\sigma:[n] \rightarrow[n]$ such that $\sigma(1)=2$.
(2) Let $n \in \mathbb{Z}_{>0}$ and let

$$
\operatorname{SL}_{n}(\mathbb{R})=\left\{M \in \operatorname{GL}_{n}(\mathbb{R}): \operatorname{det} M=1\right\}
$$

Prove that $\mathrm{SL}_{n}(\mathbb{R})$ forms a group under multiplication. (It's called a special linear group.)
(3) Show that the set $\{5,15,25,35\}$ forms a group under multiplication modulo 40. What is the identity element of this group?
(4) Let G be a group and let $a, b, c \in G$. Recall that we proved the "sock-shoe principle", which says that $(a b)^{-1}=b^{-1} a^{-1}$.
(a) Prove that $(a b c)^{-1}=c^{-1} b^{-1} a^{-1}$. (You can use the sock-shoe principle if you want.)
(b) State the obvious genearalization of (b) to from 3 to n elements in G. Convince yourself that the statement is true.
(5) Let G be a group and let $a, b \in G$. Prove that $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.
(6) Let G be a group and let T be its multiplication table, with $a b$ in Row a, Column b for all $a, b \in G$. (Of course, if G is infinite then the table is infinite and we can't really write it down, but we can still fill each table cell easily.)
(a) What condition on T is equivalent to G being abelian?
(b) Prove that, if we write out a row in T, then that row contains every element of G, and every element appears exactly once in the row.
(c) Suppose G is a group with three elements e, a, b, where e is the identity. Show that if we order the rows and columns of T in the order e, a, b, then there is a unique possibility for T.

