Math 2135. Proof practice worksheet

Let V, W be arbitrary vector spaces. Fill in the blank spaces below to complete the proofs.

1. Let $T: V \rightarrow W$ be a linear map. Prove that $T\left(0_{V}\right)=0_{W}$.

Proof. We have

$$
T\left(0_{V}\right)=T\left(0_{V}+0_{V}\right)=T\left(0_{V}\right)+T\left(0_{V}\right)
$$

where the first equality holds because \qquad and the second equality holds because \qquad
Let $w=T\left(0_{V}\right)$. Then the above equality becomes $w=w+w$. Adding \qquad to both sides of the new equality, we get \qquad .
It follows that $w=0$, and we are done.
2. Let $T: V \rightarrow W$ be a linear map. Prove that $\operatorname{ker} T$ is closed under addition.

Proof. We need to prove that if u, v are vectors in $\operatorname{ker} T$, then $u+v$ is also in $\operatorname{ker} T$. So, suppose $u, v \in \operatorname{ker} T$. Then ...
\ldots So $u+v \in \operatorname{ker} T$, and we are done.
3. Let $T: V \rightarrow W$ be a linear map. Prove that $\operatorname{ker} T$ is a subspace of V. Feel free to invoke the results of Problems 1 and 2.

Proof. We need to prove that ker T satisfies three properties:
(a) We need to show that...
(b) We need to show that $\operatorname{ker} T$ is closed under addition.
(c) We need to show that...
4. Prove that for every nonempty subset S of V, the span of S is a subspace of V.

Proof. We need to to show that $\operatorname{Span}(S)$ satisifies three properties ...
5. Suppose that $B=\left\{v_{1}, \ldots, v_{p}\right\}$ is a basis of V. Then every element $v \in V$ can be written as a unique linear combination of v_{1}, \ldots, v_{p}.

Proof. Let $v \in V$. We first note that v can be written as a linear combination of v_{1}, \ldots, v_{p} because \qquad .
It remains to prove uniqueness, that is, we need to prove that if $v=c_{1} c_{1}+\cdots+c_{p} v_{p}$ and $v=d_{1} v_{1}+\cdots+d_{p} v_{p}$ for scalars c_{1}, \ldots, c_{p} and d_{1}, \ldots, d_{p}, then \qquad . So, suppose $v=c_{1} c_{1}+\cdots+c_{p} v_{p}=d_{1} v_{1}+\cdots+d_{p} v_{p}$. Then \ldots

