## Math 2130. Review for Chapters 5 and 6

## Final Exam Information:

The final exam will be available on Canvas in Assignments/Final Exam from 11:59 am to $11: 59 \mathrm{pm}$ of Wednesday, May 5, 2021. The exam is designed so that you should be able to finish it in two hours, but to be flexible I'm giving you the twelve-hour window, and you are allowed to take as much time as you need to finish the problems, as long as you finish the submission by 11:59 pm. Given the long twelve-hour window, late submission will absolutely not be accepted.

The final exam will be cumulative, despite the fact that this review sheet only concerns Chapters 5 and 6 of the book, which are the parts covered after the second midterm. For review of Chapters 1-4, please see the two previous review sheets.

## Review Problems:

1. Read the sections 5.1-5.4 and 6.1-6.4 in the book. For Section 6.4 you can stop right after the statement of Theorem 11.

2 . Let $A$ be an $n \times n$ matrix.
(a) State the definition of an eigenvector and the corresponding eigenvalue for $A$. Can an eigenvector be the zero vector? At most how many eigenvalues can $A$ have?
(b) Given a vector $v$, how should we check whether $v$ is an eigenvector of $A$ ? Given a scalar $\lambda$, how should we check whether $\lambda$ is an eigenvalue of $A$ ? Do exercises 5 and 7 in Section 5.1.
(c) What is the characteristic polynomial of $A$ ? How does it relate to the problem of finding eigenvalues of $A$, and what is the algebraic multiplicity of each eigenvalue? Do Exercise 15 of Section 5.2.
(d) For each eigenvalue $\lambda$ of $A$, how many eigenvectors does the corresponding eigenspace
$E_{\lambda}$ (i.e., the set of eigenvectors of $A$ with eigenvalue $\lambda$ ) have? How can we find a basis of $E_{\lambda}$ ?
(e) Recall that for each eigenvalue $\lambda$ of $A$, the dimension of the eigenspace $E_{\lambda}$ is called the geometric multiplicity of $A$. What can we say about the relationship between the geometric multiplicity and the algebraic multiplicity of each eigenvalue?
(f) What does it mean for $A$ to be diagonalizable? How does diagonalizability relate the algebraic and geometric multiplicities of the eigenvalues of $A$ ? Read examples 3, 4 and 6 in Section 5.3.

3 . Let $A$ be an $n \times n$ matrix?
(a) What does it mean to diagonalize $A$ ? Describe how to test whether it can be done, and how to do it when possible.
(b) Do exercises 1, 3, and 11 in Section 5.3.
4. Let $V$ and $W$ be abstract vector spaces. Let $B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$ be a basis of $B$, and let $C=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\}$ be a basis of $C$.
(a) Given a vector $w \in W$, what is the coordinate vector $[w]_{C}$ of $w$ with respect to $C$ ? Which vector space is $[w]_{C}$ in?
(b) Find $[w]_{C}$ for each of the following cases.
i. $W=\mathbb{R}^{3}, w=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $C$ is the standard basis

$$
C=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

ii. $W=\mathbb{R}^{3}, w=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $C$ is the basis

$$
C=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right\} .
$$

iii. $W=P_{2}$, the set of polynomials with real coefficient of degree at most 2, $w=2 t+3 t^{2}$, and $C$ is the basis $\left\{t^{2}, t, 1\right\}$.
iv. $W=P_{2}$, the set of polynomials with real coefficient of degree at most 2, $w=2 t+3 t^{2}$, and $C$ is the basis $\left\{2 t, t^{2}-2,2\right\}$.
(c) Now let $T: V \rightarrow W$ be a linear map. How do we find the matrix $[T]_{B}^{C}$, the matrix of $T$ relative to $B$ and $C$ ? In particular, how do we find the $j$-th column of $[T]_{B}^{C}$ for $1 \leq j \leq n$ ? Do exercises 1, 2 in Section 5.4.
(d) Find $[T]_{B}^{C}$ in the following cases.
i. $V=P_{2}, B=\left\{1, t, t^{2}\right\}, W=P_{2}, T: V \rightarrow W$ is the "differentiation" map, and $C$ is as in (b.iii).
ii. $V=P_{3}, B=\left\{1, t, t^{2}, t^{3}\right\}, W=P_{2}, T: V \rightarrow W$ is the "differentiation" map, and $C$ is as in (b.iii).
iii. $V=P_{3}, B=\left\{1, t, t^{2}, t^{3}\right\}, W=P_{2}, T: V \rightarrow W$ is the "differentiation" map, and $C$ is as in (b.iv).
iv. $V=P_{3}, B=\left\{1, t, t^{2}, t^{3}\right\}, W=P_{2}, T: V \rightarrow W$ is the "differentiation" map, and $C$ is as in (b.v).
5. Let $A$ be an $n \times n$ matrix, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear map given by $T(x)=A x$ for all $x \in \mathbb{R}^{n}$. How does the diagonalizability of $A$ relate to the problem of trying to find a basis $B$ of $\mathbb{R}^{n}$ for which $[T]_{B}^{B}$ is diagonal? Read Example 3 and do exercises 13 and 15 in Section 5.4.
6. Let $B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$ be two bases of $R^{n}$.
(a) How do we find the change-of-basis matrix $\mathcal{P}_{C \leftarrow B}$ from $B$ to $C$ ? What equation should hold for $\mathcal{P}_{C \leftarrow B}$ and the coordinate vectors $[v]_{B},[v]_{C}$ where $v$ is an arbitrary vector in $\mathbb{R}^{n}$.
(b) How are the two change-of-basis matrices $\mathcal{P}_{C \leftarrow B}$ and $\mathcal{P}_{B \leftarrow C}$ related?
7. Let $u, v$ be vectors in $\mathbb{R}^{n}$.
(a) State the definition of the inner product $u \cdot v$ of $u$ and $v$.
(b) Explain why $u \cdot u \geq 0$ for all $u \in \mathbb{R}^{n}$.
(c) Prove that for each $u \in \mathbb{R}^{n}$, the map "dot with $u$ ", i.e., the map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $f(v)=u \cdot v$, is a linear map.
(d) Define the length of $u$. Explain how to "normalize" any given vector $u$, i.e., how to find a unit vector with length 1 which points in the same direction as $u$. Do Exercise 9 in Section 6.1.
(e) How is the distance between $u$ and $v$ defined? Do Exercise 13 in Section 6.1.
(f) Explain, in terms of inner products, what it means for $u$ and $v$ to be orthogonal.
8. Let $B=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be an orthogonal basis of $\mathbb{R}^{n}$ and let $y \in \mathbb{R}_{n}$.
(a) Let $1 \leq j \leq n$. What's the $j$-th coordinate in the vector $[y]_{B}$ ?
(b) Write down the formula for the orthogonal projection $\hat{y}_{j}$ of $y$ onto $u_{j}$.
(c) Let $1 \leq i<j \leq n$. Are the orthogonal projections $\hat{y}_{i}$ and $\hat{y}_{j}$ orthogonal? Why?
(d) Let $I$ be a subset of $B$ and let $W$ be the subspace of $\mathbb{R}^{n}$ spanned by the elements in $I$. How do we find the orthogonal projection $\operatorname{proj}_{W} y$ of $y$ onto $W$, and how do we find the distance from $y$ to $W$ ? Read examples 3,4 and do problems 11, 13, 15 in Section 6.3.
9. Explain what the Gram-Schmidt algorithm does and how it runs. Read examples 1,2 and do exercises 1, 2, 3 in Section 6.4.

