Math 2130. Review for Midterm II Solution Guide for Review Problems

1. Do read them!
2. (a) Answer: A^{-1} is the unique matrix M such that $A M=I_{n}=M A$.
(b) The inverse should be

$$
A^{-1}=\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

To get this, we should row-reduce the matrix $\left[A \mid I_{3}\right]$ to the point where the left half is I_{3}, whence the right half is the desired inverse.
(c) Since $A A^{-1}=I_{n}$ and $\operatorname{det} I_{n}=1$, we have

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)
$$

It follows that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$.
(d) We have

$$
\operatorname{det}\left(C^{2}\left(C^{T}\right)^{3} C^{-1}\right)=[\operatorname{det}(C)]^{2}\left[\operatorname{det}\left(C^{T}\right)\right]^{3} \operatorname{det}\left(C^{-1}\right)=[\operatorname{det}(C)]^{2}[\operatorname{det}(C)]^{3}[\operatorname{det}(C)]^{-1}=[\operatorname{det}(C)]^{4},
$$

where the first two equalities follow from the facts mentioned in (c) and (d) (can you identity what facts are used in each step precisely?). A quick computation gives $\operatorname{det}(C)=-2$, therefore the desired determinant should be $(-2)^{4}=16$.
3. Here's the completed statement:

Theorem 1. The following are equivalent.
(a) A is invertible.
(b) An echelon form of A contains \mathbf{n} pivot columns.
(c) An echelon form of A contains no zero rows.
(d) The columns of A are linearly independent.
(e) The columns of A span $\mathbb{R}^{\mathbf{n}}$.
(f) The rank of A is \mathbf{n}.
(g) The nullity of A is $\mathbf{0}$.
(h) The map T is injective.
(i) The map T is surjective.
(j) The map T is bijective.
(k) The kernel of T is trivial, i.e., $\{\mathbf{0}\}$.
(l) The image of T is (all of) $\mathbb{R}^{\mathbf{n}}$.
(m) The equation $A x=0$ has a unique/only the trivial solution.
(n) The equation $A x=b$ has a unique solution for all $b \in \mathbb{R}^{n}$.
(o) $\operatorname{det} A$ is not zero.
(p) A^{T} is invertible.
4. (a) See sections 4.2 and 4.5 for the definitions.
(b) For A, the dimensions of the column space, row space and null space are 4, 4 and 3 , respectively. For A^{T}, the row and column spaces have dimension 4 while the null space has dimension 0 . (Why?)
Since each column of A is a vector in $\mathbb{R}^{4}, \operatorname{Col} A$ is a subspace of \mathbb{R}^{4}. Since the column space has dimension $4=\operatorname{dim}\left(\mathbb{R}^{4}\right)$, it follows that $\operatorname{Col} A=\mathbb{R}^{4}$. On the other hand, it is wrong to say that $\operatorname{Null} A=\mathbb{R}^{3}$, since the null space consists of vectors of length 7 , not 3 .
(c) Recall the correct algorithms for finding the bases: First we need to compute an echelon form C of B to see where the pivots are. The pivot columns in B itself then form a basis for the column space, and the pivot rows in the echelon form C form a basis for the row space. To get a basis for the null space we need to further reduce C to the reduced echelon form, solve the equation $B x=0$ in parametric vector form, then conclude that the constant vectors in the parametric form is a basis for Null B. The reduced echelon form of B is

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and a basis for Null B is given by

$$
\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right] .
$$

I'll leave out the other details.
5. Let

$$
A=\left[\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right]
$$

(a) We can use a cofactor expansion to compute $\operatorname{det} A$; the answer should be -36 . To obtain $\frac{1}{2} A$ from A we need to scale all four rows of A by $1 / 2$. Each time we scale a row by a number k the determinant is also scaled by k, therefore $\operatorname{det}(A / 2)=(-36) \times(1 / 2)^{4}=-36 / 16=-9 / 4$.
(b) We have $\operatorname{det} B=-\operatorname{det} A=36$, since interchanging two rows negates the determinant.
(c) We have $\operatorname{det} C=\operatorname{det} B=36$, since adding a multiple of a row to another row does not affect the determinant.
6. Let V, W be vector spaces and let $T: V \rightarrow W$ be a linear map.
(a) See Section 4.1.
(b) We should check that $\operatorname{Im} T$ satisfies the three properties in the definition of a subspace. We did this and many similar problems in class; see the relevant notes.
(c) One way to show this is to prove that the set is not closed under addition: if $v, v^{\prime} \in T$, then $T\left(v+v^{\prime}\right)=T(v)+T\left(v^{\prime}\right)=w+w=2 w \neq w$, where the first equality follows from linearity of T and $2 w \neq w$ since $w \neq 0$. It follows that the given set is a subspace of W. You can also argue that the set fails to be a subspace because it is not closed under scalar multiplication or that it doesn't contain zero (why?).
7. (a) The sum rule and scaling rule from calculus state that $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ and $(c f)^{\prime}=c f^{\prime}$ for any $c \in \mathbb{R}$ and $f, g \in P_{3}$, which are exactly the defining properties of a linear map that d needs to satisfy.
(b) An arbitrary element $f \in P_{3}$ takes the form $f(t)=a+b t+c t^{2}+d t^{3}$, whence $d(f(t))=b+2 c t+3 d t^{2}$. Thus, $d(f(t))=0$ if and only if $b=c=d=0$, if and only if $f(t)=a$, i.e., if and only if $f(t)$ is a constant polynomial. Note that the constant polynomial 1 for all $t \in \mathbb{R}$ spans the set of all constant functions. Being a set with a single nonzero element, $\{1\}$ is also linearly independent, therefore $\{1\}$ forms a basis of the kernel.
(c) By the generic form of $f(t)$ and $d(f(t))$ in (b), the image of d is the set $\{b+2 c t+$ $\left.3 d t^{2}: b, c, d \in \mathbb{R}\right\}=\left\{B+C t+D t^{2}: B, C, D \in \mathbb{R}\right\}$. The elements $1, t, t^{2}$ clearly span this set and are linear independent (why?), therefore $\left\{1, t, t^{2}\right\}$ is a basis for the image.
(d) It suffices to show that the coordinate vectors of the vectors in B with respect to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$ forms a basis of \mathbb{R}^{4}. The coordinate vectors are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
3 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
4 \\
0 \\
0 \\
1
\end{array}\right] .
$$

To check they are a basis of \mathbb{R}^{4}, it suffices to check that the matrix $A=\left[v_{1}\left|v_{2}\right| v_{3} \mid v_{4}\right]$ is invertible. Now A is in fact already in echelon form and has no zero row, so A is invertible, as desired.
(e) The coordinate vector of $g(t)$ with respect to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$ in P_{3} is

$$
v=\left[\begin{array}{c}
-10 \\
1 \\
2 \\
1
\end{array}\right]
$$

therefore $[g(t)]_{B}$ equals $[v]_{B^{\prime}}$ where $B^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, i.e., to find $[g(t)]_{B}$ is to
solve $A x=v$. The answer should be

$$
[g(t)]_{B}=\left[\begin{array}{c}
-18 \\
-1 \\
2 \\
1
\end{array}\right]
$$

8. (a) If suffices to check that the matrices $M_{B}=\left[b_{1} \mid b_{2}\right]$ and $M_{C}=\left[c_{1} \mid c_{2}\right]$ are invertible. We can do so by computing their determinant and noting that they are not zero.
(b) Recall that $\mathcal{P}_{C \leftarrow B}$ should be the matrix on the right half of the result we get when we row reduce $\left[M_{C} \mid M_{B}\right]$ to the point where the left half is I_{2}. In this case, we should get

$$
\mathcal{P}_{C \leftarrow B}=\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right] .
$$

(c) We have

$$
\mathcal{P}_{B \leftarrow C}=\left(\mathcal{P}_{C \leftarrow B}\right)^{-1}=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 3
\end{array}\right] .
$$

(d) We should get

$$
v=M_{C}[v]_{C}=\left[\begin{array}{c}
-5 \\
1
\end{array}\right]
$$

and

$$
[v]_{B}=\mathcal{P}_{B \leftarrow C}[v]_{C}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

