Math 2130. Review for Midterm II

Midterm Information:

The midterm will be available on Canvas in Assignments/Midterms from 5:59 pm to 11:59 pm of Monday, April 5, 2021. Please upload your completed midterm in the same way you submit your homework by $11: 59 \mathrm{pm}$. The exam is designed so that you should be able to finish it in one hour, but to be flexible I'm giving you the six-hour window, and you are allowed to take as much time as you need to finish the problems, as long as you finish the submission by 11:59 pm. Given the long six-hour window, late submission will absolutely not be accepted.

Review Problems:

1. Read the following sections in the book: 2.1-2.3, 2.8-2.9, 3.1-3.3, 4.1-4.7. For Section 3.3 you only need to read the part about "Determinant as Area or Volume".
2. Let A, B be $n \times n$ matrices.
(a) State the definition of A^{-1}.
(b) Find the inverse of the matrix

$$
C=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

(c) Recall that $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$. Use this fact (which you should know) and Part (a) to prove that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$.
(d) Recall that $\operatorname{det} A=\operatorname{det} A^{T}$, where A^{T} stands for the transpose of A. Use this fact (which you should know) and the previous parts to compute $\operatorname{det}\left(C^{2}\left(C^{T}\right)^{3} C^{-1}\right)$ for the matrix C from Part (b).
3. Let A be an $n \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the map defined by $T(x)=A x$ for any $x \in \mathbb{R}^{n}$. Fill in the blanks below for the characterization of invertible matrices.

Theorem 1. The following are equivalent.
(a) A is invertible.
(b) An echelon form of A contains . . pivot columns.
(c) An echelon form of A contains ... zero rows.
(d) The columns of A are
(e) The columns of A span....
(f) The rank of A is
(g) The nullity of A is
(h) The map T is injective.
(i) The map T is
(j) The map T is bijective.
(k) The kernel of T is....
(l) The image of T is....
(m) The equation $A x=0$ has \ldots solution.
(n) The equation $A x=b$ has \ldots solution for all $b \in \mathbb{R}^{n}$.
(o) $\operatorname{det} A \ldots$ zero.
(p) A^{T} is \ldots
4. (a) State the definition of the null space, column space, and row space of a matrix.
(b) Let A be an 4×7 matrix with 4 pivot columns. Find the dimensions of the null space, column space and row space of A, then do the same for the transpose A^{T}. Is $\operatorname{Col} A=\mathbb{R}^{4}$? Is Null $A=\mathbb{R}^{3}$?
(c) Let

$$
B=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find bases for Null $B, \operatorname{Col} B$, Row B, then conclude what their dimensions are.
5. Let

$$
A=\left[\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right]
$$

(a) Compute $\operatorname{det} A$, then use it to compute $\operatorname{det}\left(\frac{1}{2} A\right)$.
(b) Let B be the matrix obtained from A by interchanging the top and bottom row. What is $\operatorname{det} B$ and why?
(c) Let C be the matrix obtained from B by adding 3 times the first row to the third row. What is $\operatorname{det} C$ and why?
6. Let V, W be vector spaces and let $T: V \rightarrow W$ be a linear map.
(a) State the definition of a subspace of V.
(b) Prove that the image of T is a subspace of W.
(c) Let w be a nonzero element in W. Prove that the set $\{v \in V: T(v)=w\}$ is not a subspace of V.
7. Let P_{3} be the vector space of all polynomials in indeterminate t of degree at most 3 .
(a) Prove that the differentiation map $d: P_{3} \rightarrow P_{3}$, i.e., the map defined by $d(f(t))=$ $f^{\prime}(t)$ for any $f(t) \in P_{3}$, is a linear map. Clearly point out any facts from calculus you are using.
(b) Describe the kernel of d, then find a basis of the kernel.
(c) Describe the image of d, then find a basis of the image.
(d) Verify that the set $B=\left\{1,2+t, 3+t+t^{2}, 4+t^{3}\right\}$ is a basis of P_{3}.
(e) Let $g(t)=t^{3}+2 t^{2}+t-10$ and let B be as in Part (d). Find $[g(t)]_{B}$.
8. Let $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$ where

$$
b_{1}=\left[\begin{array}{l}
7 \\
5
\end{array}\right], \quad b_{2}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right], \quad c_{1}=\left[\begin{array}{c}
1 \\
-5
\end{array}\right], \quad c_{2}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right] .
$$

(a) Prove that both B and C are bases of \mathbb{R}^{2}.
(b) Find $\mathcal{P}_{C \leftarrow B}$, the change-of-basis matrix from B to C.
(c) Use the previous part to find $\mathcal{P}_{B \leftarrow C}$.
(d) Suppose $[v]_{C}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ for some $v \in \mathbb{R}^{2}$. Find v and $[v]_{B}$.

