Math 2130. Lecture 9.

02.05.202)

h

Last time: geometry of vectors in
$$IR^2$$
 and IR^3
· solve sets of homogeneous and non-homogeneous systems.
 $C\vec{x}=\vec{o}$ $C\vec{x}=\vec{b}$ $(\vec{b}\neq o)$

1. Size of spanning (lm. ind. sets.
Let
$$S = \{\vec{v}_1, \dots, \vec{v}_k\} \in \mathbb{R}^n$$
. Let $C = [\vec{v}_1 | \dots | \vec{v}_k]$.
Recall that S spans (\mathbb{R}^n) iff $EF(C)$ has no zero row,
iff every row $M \subset i$ prot.
It follows that if S spans (\mathbb{R}^n) , then
 $N = \#$ rows $M \subset = \#$ pixel row $= \#$ pixels $M \in EF(C) \leq \#$ cols $M \subset = k$
i.e., a spanning set in (\mathbb{R}^n) must have at least n vectors.
eff. for a set S to span (\mathbb{R}^n) . S needs to have at least two vectors.
(Span of one yeator rs at met a line, not a plan.)

Similarly, recall that S is kin. and iff every col in C is priot.
It follows that if
$$S \in \mathbb{R}^n$$
 is line and, then
 $l_{\mathbb{R}} = # cdr \in \mathbb{C} = # proof cols = # prior in C \leq # rows in C = n,$
i.e., a line inder set in $(\mathbb{R}^n \text{ con have at most } n \text{ ebts.})$
eq. for a set s to be line and in $(\mathbb{R}^2, S \text{ can have at most})$
two vectors.
 $I = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n}$

Note: The converses of the two facts don't hold.
True: if
$$|S| \leq n$$
, then S doesn't span $[\mathbb{R}^n]$.
Converse: if $|S| \geq n$, then S span, $[\mathbb{R}^n] \longrightarrow$ not true.
Eq. $S = \{ \begin{bmatrix} i \\ i \end{bmatrix}, \begin{bmatrix} z \\ z \end{bmatrix} \} \leq R^n$
True: if $(S) \geq n$, then S 3 not lin and in $[\mathbb{R}^n]$.
Converse: if $|S| \leq n$, then S 3 lin and in $[\mathbb{R}^n]$.
Eq. $S = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \} \leq R^n$.

Examples. Determine if S spans
$$IR^{n}$$
 and if S is lin., ind.
(1) $S = \{ \begin{bmatrix} i \\ j \end{bmatrix}, \begin{bmatrix} i \\ 2 \end{bmatrix}, \begin{bmatrix} j \\ 3 \end{bmatrix} \} \in IR^{2}$.
Sola: $|S| = 3 = 2$, so S is not lim ind.
Spanning: $\begin{bmatrix} i & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} i & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ there is no zero row in the E.F.
So S spans IR^{2} .
 $T = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \} \in IR^{3}$
Sola: $T = 2 < 3$, so T does not span IR^{3} ; T contains \overline{O} , so T is not lin ind.
(3). $U = \{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \} \in IR^{3}$.

2. Linear transformation).

۰١

J

Note: The map
$$T: P_3 \rightarrow P_2$$
 given by found diff Ti linear
because diff respects add, and scalar mult. by (alculus.
 $(f + g)' = f' + g'$, $(c \cdot f)' = c \cdot f'$,
Using linearity. Let $S = f \overline{V}_1, \dots, \overline{V}_k J \equiv R^n$ be a spanning set $f(R^n)$.
Supplue we have $= lin$. transf. $T \equiv (R^n \rightarrow (R^m)$ and suppose we know
 $T(\overline{V}_1), T(\overline{V}_2), \dots, T(\overline{V}_k)$. Then in theory we know $T(\overline{V})$ for all $\overline{V} \in [R^n]$.
Reason: S spans (R^n, so) $\overline{V} = c_1\overline{V}_1 + \dots + c_k\overline{V}_k$ for some C_1, \dots, S_K
Linearity of \overline{T} then forces $T(\overline{V}) = T(c_1\overline{V}_1 + \dots + c_k\overline{V}_k)$
 $= c_1\overline{\Gamma(\overline{V}_1)} + C_2\overline{\Gamma(\overline{V}_2)} + \dots + c_k\overline{\Gamma(V_k)}$

$$\begin{aligned} \overline{b}arpler \\ (1) \quad Sey \quad we \quad have \quad a \quad lin. \quad map \quad T: \quad (R^{2} \rightarrow 1R^{3} \quad w.7h) \\ T \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad T \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \\ \hline known \quad known \quad known \quad have n \quad$$

(i). Say we have a lin map
$$U: [R^3 \rightarrow IR^3]$$
 with
 $U\left(\begin{bmatrix} 0\\0\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad U\left(\begin{bmatrix} 0\\0\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \quad U\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix}\right) = \begin{bmatrix} -1\\-1\\-1 \end{bmatrix}$
Then for an arbitrary elt $\vec{v} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \in IR^3, \text{ since}$

$$\vec{y} = \alpha \begin{bmatrix} i \\ o \end{bmatrix} + b \begin{bmatrix} i \\ i \end{bmatrix} + c \begin{bmatrix} i \\ i \end{bmatrix},$$

we have

$$\mathcal{L}(\mathcal{J}) = \mathcal{N}(\mathfrak{a}[\overset{b}{\mathfrak{o}}] + \mathfrak{b}[\overset{o}{\mathfrak{o}}] + \mathfrak{c}[\overset{o}{\mathfrak{o}}]) = \mathcal{A}\mathcal{U}([\overset{o}{\mathfrak{o}}]) + \mathcal{b}\mathcal{U}([\overset{o}{\mathfrak{o}}]) + \mathcal{b}\mathcal{U}([\overset{o}{\mathfrak{o$$