Last time; linear independence;

- def.
$$\left(\chi_1 \vec{v}_1 + \dots + \chi_k \vec{v}_k = \vec{0}\right) \Rightarrow \chi_1 = \chi_2 = \dots = \chi_k = 0$$

Today: geometry of vectors homogeneous vs. non-homogeneous LFS.

1. Genety of Vectors. . We redentify IR2 with the 2-D plane and identify

each vector
$$\vec{V} = \begin{bmatrix} a \\ b \end{bmatrix} \in (R^2 \text{ with the army op} \text{ from the origin of the point } P = (a_1b)$$
. e.g. $\vec{J} = \begin{bmatrix} 2 \\ i \end{bmatrix} \iff \vec{V} = \begin{bmatrix} a \\ c \end{bmatrix}$ note the comma in the tuple notation \vec{V}

- We identify IR3 with the 3-D space and identify

each vector $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^3$ with the amoun \vec{OP} from the engin of to the point P = (a, b, c) eq. $\vec{J} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$. We also identify arrows with the same direction and length as equal vectors.

· (Paradellogran law) For U, JGR2 or R3, U+V corresponds to the (arrow from the origin to) the fourth vertex of the paradedogram ([]) whose other ventries are o, ti, and 7. $\begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad \Longleftrightarrow \quad$ · Scaling a vector scales the langth

Scaling a vector scales the length without changing it direction.

3. [1] = [6]

times the length.

(Linear combination) Now that we can add and scale vectors. we can draw their linear comb. as well, E.g. Given a vector two vectors \vec{v} and \vec{w} in (R^3) , the set $\{\vec{z}\vec{v} \neq \vec{v} \mid \vec{z} \in IR^3\}$. { $z\vec{v} + \vec{w}$ | zeiR} can be described as

the line in iR^3 that passes through \vec{w} in apposite is

the direction of \vec{v} . More drawings in homework...

2. Homogeneous VI. Non-homogeneous systems.

Def. An LES of the form (*)
$$\begin{cases} a_{ii}X_1 + \cdots + a_{in}X_n = b, \\ \vdots & \vdots \\ a_{mi}X_1 + \cdots + a_{mn}X_n = bm \end{cases}$$
 (alled

homogenemi if $b_1 = b_2 = \cdots = b_n = 0$. Similarly, we say a ver eq.

$$\chi_1 \vec{J}_1 + \cdots + \chi_K \vec{J}_K = \vec{J}_1 \vec{J}_1 = \vec{J}_2$$
 and sey a matrix ep. $(\vec{J}_1 = \vec{J}_2)$ (5 homogeneous)

I homogeneous if $\vec{J} = \vec{o}$. (So, a LES is hom. iff its vec eq. is hom, iff its matrix eq. is hom.)

Note, $\vec{\chi} = \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is a solu of (x) iff (x) is homogeneous.

ie, it's the line in IR3 that goes through the critic in the direction [-12].

Thm. Consider a hom. nation $C\vec{x} = \vec{0}$ and a non-hom eq. $C\vec{x} = \vec{b}$ $(\vec{b} \neq 0)$ Suppose that both equation, are consistent. Let So be the solu Jet of $C\vec{x} = \vec{\delta}$, let $S_{\vec{b}}$ be the soln set of $C\vec{x} = \vec{b}$, and let i be a particular solu of $C\vec{x} = \vec{b}$. **FIGURE 5** Parallel solution sets of Ax = b and Then we have $5\overline{b} = 5\overline{b} + \overline{1}$, i.e., So = { w + v | w & So }. So geometrically

Sto is a shift of So.

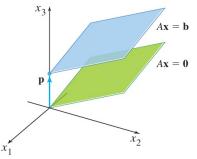


FIGURE 6 Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$.

 $\frac{6x}{6x}$ Work out the who sets of $\begin{cases} x+2y-z=4\\ x-y+z=0 \end{cases}$

and $\begin{cases} x + 2y - 2 = 0 \\ x - y + 2 = 0 \end{cases}$ Draw them, compare them and note that they

fit the description, of the theorem.

Next time: linear transformations