04.26, 202/. Next lecture: review. Math 4140. Lecture 41. Review for Ch. 5 & 6 available online. orthogonal forthonormal bases of IR" advantage: makes coordinate vectors easier to compute. If $B = \{v_1, -, v_n\}$ is an orthogonal basis, then $\forall v \in IR^n$ We have $[V]_B = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix}$ is given by $C_i = \frac{\langle V, V_i \rangle}{\langle V_i, V_i \rangle}$. orthogonal projections $\{v_1, \dots, v_n\}$ $\{v_1,$

 $y \in \mathbb{R}^n$, orthogonal basis B of \mathbb{R}^n , a subset I of B \hat{y}_I , proj of y onto the span of B $\hat{y}_I = \sum_{i \in I} C_i V_i$.

geometric properties of \hat{y}_I : $\hat{y}_I \in \mathrm{Span}\, I$, \hat{y}_I is the obset point in $\mathrm{Span}\, I$.

Today: nove on orthogonal projections

the Gram-Schmidt process (for constructing orthogonal base)

1. Orthogonal projections, revisited.

Facts: As we'll see, every subspace W & IR" has at least one

Any bails of $W \subseteq IR^n$ can be extended to a base of IR^n .

Subspace eq. W = xy-planes (pan $\underline{fe_i,e_1} \subseteq IR^3$ extent fe_i,e_2,e_3)

base of IR^n .

Subspace ef. $W = \frac{1}{2}$ where $\frac{1}{2}$ and $\frac{1}{2}$

Then $\left\{ u_i = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ is an orthor basis of W and it can be extended to the standard basis of IR^3 .

Point: We may talk about the orthogonal projection of $y \in IR^n$ onto a subspace $W \subseteq IR^n$ without having a given orthogonal basis of IR^n or of W.

In the previous example, if $y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, then we can speak if $Proj_W y$ area if we are not given an orthogonal basis of W to start with.

even if we are not given an orthogonal basis of W to start with.

The distance from y to W is still $\|y - proj_w y\|$: $y = \lceil \frac{2}{4} \rceil \quad W = Span \left\{ \lceil \frac{1}{6} \rceil \mid \lceil \frac{2}{4} \rceil \right\}$ we can compute an orthogonal basis

 $y = \begin{bmatrix} \frac{2}{4} \\ \frac{1}{4} \end{bmatrix}$, $W = Span \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2}{4} \\ 0 \end{bmatrix} \right\}$ $\begin{cases} u_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, u_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, u_5 = \begin{bmatrix} 0$

Remark: As noted above, to find projuy we often need to fix i = 1,2.

find an orthogonal basis of W unvielves. — done by the Gran-Schmidt process.

2. The Gram-Schmidt algorithm.

Input: A basis B = { X1, X2, --, xp} of a subspace W of IRn.

Output: An orthogonal bowsis B'={V, , Vz, --. Vp} of W.

Main idea: repeatedly compute vectors of the form y-frojuy where

y & B and U is a subspace of W.

The algorithm:

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \end{cases} \longrightarrow V_1 = \chi_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

$$V_{i-1} = Span \{V_{i-1}, \dots, V_{i-1}\} \text{ and compute}$$

$$V_{i} = \chi_{i} - pr_{i} u_{i-1}^{\chi_{i}}.$$

$$V_{i} = \left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}, \quad U_{i-1} = Span \{V_{i}\},$$

$$V_{i} = \chi_{i} - pr_{i} u_{i-1}^{\chi_{i}} \chi_{i} = \chi_{i} - \frac{\langle \chi_{i}, V_{i} \rangle}{\langle V_{i}, V_{i} \rangle},$$

$$= \left[\begin{bmatrix} 2 \\ 6 \end{bmatrix} - \frac{\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rangle}$$

 $= \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

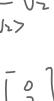
(2). When {V, V2, --, V; } have been found, we set

Now
$$\{V_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\}$$
 are known, so we can compute V_3 .
$$V_3 = \chi_3 - prij_{U_2} \chi_3 = \chi_3 - proj_{Span \ Span \ S$$

13) Stop when all VIII--- Up have been computed.

$$= \chi_3 - \frac{\langle \chi_3, V_1 \rangle}{\langle V_1, V_1 \rangle} V_1 - \frac{\langle \chi_3, V_2 \rangle}{\langle V_2, V_2 \rangle}$$

$$= \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$



$$= \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}.$$

$$23 \cdot \{V_1, V_2, V_3\} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}$$

$$13 \circ basis for W.$$

Example.

B =
$$\left\{\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 8 \\ 5 \\ 6 \end{bmatrix}\right\}$$
. W= Span B $\subseteq \mathbb{R}^3$.

$$S_{0} = \left\{ V_{1} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, V_{2} = \begin{bmatrix} (3/5) \\ 5 \\ 39/5 \end{bmatrix} \right\}$$

13 an orthogonal basis of W.

Check: (V, V2 7 =0,

$$\frac{\text{Soln:}}{\text{V_1}} = \chi_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

 $= \chi_2 - \frac{(\chi_2, \sqrt{17})}{(\sqrt{11}, \sqrt{11})} V_1$

 $= \begin{bmatrix} 8 \\ 5 \\ 6 \end{bmatrix} - \begin{bmatrix} 27/5 \\ 0 \\ -9/5 \end{bmatrix} = \begin{bmatrix} 13/5 \\ 5 \\ 39/5 \end{bmatrix}.$

 $= \begin{bmatrix} 8 \\ 5 \end{bmatrix} - \frac{18}{10} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$

$$B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} \right\}, \quad W = \text{Span } B \subseteq \mathbb{R}^3. \quad \left(\text{so } W = \mathbb{R}^3 \right)$$

$$\times_1 \quad \times_2 \quad \times_3$$

$$\text{Suh:}$$

$$(1) \quad V_1 = \chi_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

$$\sqrt{z} = \chi_2 - p_{ij} \chi_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} - \frac{\langle \chi_2, V_1, \gamma \rangle}{\langle V_1, V_1, \gamma \rangle} V_1$$

$$= \begin{bmatrix} 2 \\ \frac{3}{4} \end{bmatrix} - \frac{5}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \quad \text{Check} : V_1 \perp V_2$$

Now that
$$\{V_1, V_2\}$$
 are known, we can compute V_3 :
$$V_3 = \chi_3 - bv_1^2 \quad \chi_3 = \chi_3 - \frac{\langle \chi_3, V_1 \rangle}{\langle \chi_3 \rangle} V_1$$

$$\sqrt{3} = \chi_{3} - |p_{w}| \chi_{3} = \chi_{3} - \frac{\langle \chi_{3}, \sqrt{17} \rangle}{\langle \sqrt{1}, \sqrt{17} \rangle} \sqrt{1} - \frac{\langle \chi_{3}, \sqrt{27} \rangle}{\langle \sqrt{27}, \sqrt{27} \rangle} \sqrt{2}$$

$$\int_{C} |p_{un}| \langle V_{1}, V_{2} \rangle = ||f_{2}|| \int_{C} |f_{2}| \int_{C} |f_{$$

$$\begin{array}{ll}
\left(\begin{array}{c} 5 \\ 0 \end{array}\right) - \frac{6}{2} \left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \frac{\left(-2\right)}{\frac{33}{2}} \left(\begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \end{array}\right) \\
= \left(\begin{array}{c} 5 \\ 0 \end{array}\right) - \left(\begin{array}{c} 3 \\ 3 \end{array}\right) + \frac{4}{33} \left(\begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \end{array}\right)$$

$$= \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{2}{33} \\ \frac{2}{33} \\ \frac{16}{33} \end{bmatrix} = \begin{bmatrix} 64/37 \\ -64/3 \\ 6/37 \end{bmatrix}$$

 $= \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{2}{33} \\ \frac{2}{33} \\ \frac{16}{33} \end{bmatrix} = \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ -64/33 \\ \frac{16}{33} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 64/33 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} \end{bmatrix}$