Math 2130. Lecture 36.

04.14.2021.

Last time: Must diagonalizable matrices are: square matrices similar to diagonal
matrices: A s.t. ID = diag (a..., an) and P inv V A=PDP¹.
My diagonalizable matrices are interesting / nize:
if A is diagonalizable, say A = PDP¹, then A^k = PD^k P¹.
when a matrix is diagonalizable: A is diagonalizable iff
etve geom. must agrees v/ the alg. must. for every e-value
basis for of A.
if so. how we can diagonalize A
$$A = PDP^{-1}$$
 where $D = \begin{bmatrix} n_{n_{i}} \\ m_{i} \\ m_{i} \end{bmatrix}$ and $P = \begin{bmatrix} v_{i_{1}} \\ v_{i_{2}} \\ w_{i_{2}} \end{bmatrix}$
Today: more practice problems. Why $A = PDP^{-1} \rightarrow$ of linear maps

1. More diag. exercises. Determine diagonalizability. Diagonalize if possible.
(1).
$$A = \begin{bmatrix} z & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
.
Subset (sketch)
Char_A(x) = det $\begin{bmatrix} 2-x & 4 & 3 \\ -4 & -6-x & -3 \\ -3 & 3 & 1-x \end{bmatrix}$ = ... = $-(x-1)(x+2)^2$.
So the eigenvalues of A are $\lambda_1 = |$ with alg. mult. 1,
and $\lambda_2 = -2$ with alg. mult. 2.
Since alg. mult $(\lambda_1) = 1$, we must have geom. mult $(\lambda_1) = 1 = alg.$ mult (λ_1) .
Next we look for geom. mult (λ_2) :

(2).
$$A = \begin{bmatrix} -2 & iZ \\ -1 & 5 \end{bmatrix}$$

Subset:
$$char_{A}(x) = \begin{vmatrix} -2-x & iZ \\ -1 & 5-x \end{vmatrix} = (-2-x)(5-x) + iZ = \chi^{2} - 3\chi - i0 + iZ$$
$$= \chi^{2} - 3\chi + Z = (\chi - i)(\chi - Z)$$

So the evalues of A are $\lambda_{1} = \begin{bmatrix} and & \lambda_{2} = 2 \\ and & \lambda_{2} = 2 \\ both with alg. mult. (1.)$
Since both the alg. mult. are 2. A must be dragmalizable.
End: Eh_{1} = Null (\begin{bmatrix} -2-1 & iZ \\ -1 & 5-1 \end{bmatrix}) = Null (\begin{bmatrix} -3 & iZ \\ -1 & 4 \end{bmatrix}).
Note that we should have dim End geon. mult $(\lambda_{1}) = 1$.

and that
$$\begin{bmatrix} 4\\ 1 \end{bmatrix}$$
 is clearly in En, -
Therefore $\{\begin{bmatrix} 4\\ 1 \end{bmatrix}\}$ muse be a basis of En.

$$\begin{split} \overline{E}_{\lambda 2} : \quad \overline{E}_{\lambda 2} &= Null \left(\begin{bmatrix} -22 & 12 \\ -1 & 5-2 \end{bmatrix} \right) = Null \left(\begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \right) , \\ Note that \quad dim \quad \overline{E}_{\lambda 2} &= 2 \quad a_{3} \text{ in the } \lambda_{1} \text{ - case} \\ & aind \quad \begin{bmatrix} 3 \\ 1 \end{bmatrix} \in \overline{E}_{\lambda 2} , \\ S_{0} \quad \begin{cases} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \end{cases} \text{ is } a \quad basis \text{ of } \overline{E}_{\lambda 2} , \\ S_{0} \quad \begin{cases} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \end{cases} \text{ is } a \quad basis \text{ of } \overline{E}_{\lambda 2} , \\ & A &= P P P^{-1} \text{ where} \\ D &= \begin{bmatrix} 1 + 0 \\ 0 + 2 \end{bmatrix} \text{ and } P = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} \frac{3}{1} \end{bmatrix} . \quad \Box \\ N_{\text{otes}} \text{ if yow down need it for further computations, you don't have to find $P^{-1} . \end{split}$$$

(3).
$$A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix}.$$

Suba: theory (x) = det $\begin{bmatrix} 5-x & -8 & 1 \\ 0 & 0 & x & 7 \\ 0 & 0 & 2-x \end{bmatrix} \stackrel{(a_1, a_2, x)}{=} (5-x)(0-x)(2-x) = -\lambda((\chi-z)(\chi-z))(\chi-z)$
(Indeed, given a triangular mat.
$$B = \begin{bmatrix} a_1 & a_2, x \\ 0 & \ddots & a_n \end{bmatrix}, \text{ char}_{B}(x) = (a_1-x)(a_2-x)\dots(a_n-x)$$

and hence the evalues are just the obrag. entries a_1, a_2, \dots, a_n in B .)
Thus, the eigenvalues of A are $0, 2, and 5, all with odg. mult].$
In particular: A is diagonalizable.
Dragonobiction (finding P & D st $A = PDP^{-1}$.): ... Ex.

2. Why
$$A = PDP^{-1}$$
.
Setting: Let A be a diagonalizable Nxn matrix. $\lambda_1, \dots, \lambda_{k}$ are the distinct
evalues of A with alg. mult (=geon. mult) n_1, \dots, n_k ; for each ($\leq i \leq k$,
 $E\lambda_i$ has basis $B_i = \{V_{i1}, V_{i2}, \dots, V_{in_i}\}$. Finally, write $[B_i] := [V_{i1}[V_{i1}] - [V_{in_i}]$
Claim: $A = PDP^{-1}$ where $P = [B_i | B_2 | \dots | B_k]$ and $D = diag(\lambda_1, \dots, \lambda_{k_i}, \dots, \lambda_{$

... the matrix
$$[T]_{\beta}^{\gamma} = [[T(h_{1})]_{\gamma} \dots [T(h_{n})]_{\gamma}].$$

(In particular, for the standard basis $C = \int e_{1}^{\lfloor \frac{1}{2} \rfloor} e_{1}^{\gamma} e_{1}^{\gamma} e_{1}^{\gamma}$, we have
 $[T_{A}]_{c}^{c} = [[T(e_{1})]_{c} \dots [T(e_{n})]_{c}] = A$
and for $B = B_{1} \cup B_{2} \dots \cup B_{k}$,
 $[T_{A}]_{B}^{B} = [[T_{A}(v_{n})]_{B}[T_{A}]v_{n}]_{F} [T_{A}(v_{n})]_{F} \dots [T(v_{k})]_{F} \dots [T(v_{k})]_{F} [T(v_{k})]_{F}]$
 $= [[Av_{1}v_{1}]_{g} \dots [Av_{n}]_{F} [\cdots [Av_{n}]_{F}] \dots [T(v_{k})]_{F} \dots [T(v_{k})]_{F}]$
 $= [[Av_{1}v_{1}]_{B} \dots [Av_{n}]_{F} [\cdots D]$

What have we done? We have TA = IR" -> IR" and two bases C and B of IR". В.С В.С We noted that $[T_A]_C = A$ and $[T_A]_B^B = D$. Recau that $P = [V_{i}]_{c} \cdots [V_{k}]_{k} = [V_{i}] - V_{k} = P \begin{bmatrix} since C \\ is standard \end{bmatrix}$ Thus, the equation $A \equiv P D P'$ can be interproted as $\begin{bmatrix} T_A \end{bmatrix}_c^c = \begin{pmatrix} P & [T_A]_B^B & (P) \\ G \in B \end{pmatrix}^{-1}$ $\begin{bmatrix} T_A \end{bmatrix}_c^c = \begin{pmatrix} P & [T_A]_B^B & P \\ G \in B \end{pmatrix}^{-1}$ $\begin{bmatrix} T_A \end{bmatrix}_c^c = \begin{pmatrix} P & [T_A]_B^B & P \\ G \in B \end{pmatrix}^{-1}$ $\begin{bmatrix} T_A \end{bmatrix}_c^c \cdot v = P \cdot [T_A]_B^B \cdot P \cdot v$ $\begin{bmatrix} T_A \end{bmatrix}_c^c \cdot v = P \cdot [T_A]_B^B \cdot P \cdot v$ $\begin{bmatrix} T_A \end{bmatrix}_c^c \cdot v = P \cdot [T_A]_B^B \cdot P \cdot v$ $\begin{bmatrix} T_A \end{bmatrix}_c^c \cdot v = P \cdot [T_A]_B^B \cdot P \cdot v$ $\begin{bmatrix} T_A \end{bmatrix}_c^c \cdot v = P \cdot [T_A]_B^B \cdot P \cdot v$ The equation A = PDP holds since the last equation holds.