1. Diagonalizable matrices.

Def. (similarity of matrices). Two non matrices A, B are called similar if there is an muleidible matrix P s.t. B= PAP; in this case we write $A \sim B$. Note: If A TI similar to B, then $\begin{pmatrix} p & p & p = A \end{pmatrix}$ $a & a^T$ det (A) = det (B); det $B \stackrel{*}{=} det (PAP^{1})$ = det P det A det(p-1) = det A det P (det P)⁻¹ Def. L'diagnalizability) We say an nen matrix A = det A. is diagonalizable if it is similar to a diagonal matrix, it, if there is diag. matrix D and \overline{Lx} , $A \sim \overline{B} = 7 \operatorname{char}_{A}(x) = \operatorname{char}_{B}(x)$ an invertible mat. P s.t. A = PDP-1.

by are diagonalizable matrices interesting?
Main reason for us: their powers are casser to compute than those of
general matrices: if A is diagonalizable, say

$$A = PDP^{-1}$$
 for a diagonal matrix
 $D = diag(a, a_{22} - a_{31}) = \begin{bmatrix} a_{1} & a_{22} & 0 \\ 0 & \vdots & a_{3} \end{bmatrix}$,
then $A^{k} = PDP^{-1} \cdot RDP^{-1} \cdot RDP^{-1} \cdot \dots \cdot RDP^{-1}$
 $= P \cdot D^{k} \cdot P^{-1} = P \operatorname{diag}(a_{1}^{k}, a_{2}^{k}, \dots, a_{n}^{k}) P^{-1}$
relatively easy to compute.

.

Eq.
$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$
 from the lost lecture.
Read that A has evalue $\lambda_1 = -7$ and $\lambda_2 = 3$,
with alg.mult(λ_1) = gam. mult(λ_1) = 1 $\forall i \in \{1, 2\}$.
Also read that E_{λ_1} has basis $\{\begin{bmatrix} -1 \\ 3 \end{bmatrix}\}$ E_{λ_2} has basis $\{\begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix}\}$
If will turn out that we have $A = PDP^{-1}$ where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 0 & \lambda_3 \end{bmatrix}$
and $P = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 3 & 1 \end{bmatrix}$. Thus,
 $A^{k} = PD^{k}P^{-1} = \begin{bmatrix} -1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -7^{k} & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} \frac{7}{7} & \frac{7}{7} \\ 0 & 3^{k} \end{bmatrix}$; easy.
On the other hand, computing $A^{4} = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{bmatrix}$

2. Dragondrability and dragonalization vite events. Let A be an nxn nodrix.
Thm. If we have geometric (x) = alg. mult (x) for every evalue
$$\lambda$$
 of A,
then A is dragonalizable. Moreover, if $\lambda_1, ..., \lambda_k$ are the difficient evalues of
A and $B_1 = \{V_{11}, V_{12}, V_{13}, ..., V_{1n_1}\}, B_2 = \{V_{21}, V_{22}, ..., V_{2n_2}\}, ..., B_k = \{V_{k1}, ..., V_{kn_k}\}$
are the bases of $E_{\lambda_1}, ..., E_{\lambda_k}$, respectively, then $A = PDP^{-1}$ where
 $D = drag(\lambda_1, \lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_k, ..., \lambda_k)$ and $P = \begin{bmatrix}V_{11} | ... | V_{n_k} \\ V_{n_k} \end{bmatrix}, V_{n_k}$
If for some evalue λ of A we have geon. mult $(\lambda) < alg. mult (x)$, then
 A is not dragonalizable, i.e., we cannot find a dragonal matrix D and an inv.
matrix P set $A = PDP^{-1}$.

Considery. If alg. mult
$$(\lambda) = 1$$
 for all evalue λ of A , then A is
diagonalizable.
Examples. (1). $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$. \Rightarrow also from last time
 $\lambda_1 = 1$, geon. mult = alg. mult = 1; $\lambda_2 = -2$, geon. mult = alg. mult = 2.
 $B_1 = \{ \begin{bmatrix} -1 \\ -1 \end{bmatrix} \}$
 $A = DDP^{-1}$ where $P = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ and $D = \begin{bmatrix} \frac{1}{0} & 0 \\ 0 & 0 -2 \end{bmatrix}$.

$$\overline{E}_{A2} = N(ul(A - \lambda_{2}I) = N(ul(\left[-\frac{2}{-4}, \frac{2}{-4}\right])).$$

$$Similarly, we note that dim \overline{E}_{A2} = gen. mult(\lambda_{2}) = 2.$$

$$and that \left[-\frac{1}{-1}\right] \in \overline{E}_{A2}.$$

$$\int B_{2} = \left\{\left[-\frac{1}{-1}\right]\right\} = \delta \text{ basis of } \overline{E}_{A2}.$$

$$By \text{ our cheasen, we may diagonalize } A = A = A = P = P^{-1} = \begin{bmatrix}1 & 1\\ -2 & -1\end{bmatrix} \begin{bmatrix}3 & 0\\ 0 & 5\end{bmatrix} \begin{bmatrix}1 & 1\\ -2 & -1\end{bmatrix}.$$

$$It \text{ follow that } A^{k} = (P = P^{-1})^{k} = P = P P^{k} P^{-1}$$

$$= \begin{bmatrix}1 & 1\\ -2 & -1\end{bmatrix} \begin{bmatrix}3^{k} & 0\\ 0 & 5^{k}\end{bmatrix} \begin{bmatrix}-1 & -1\\ 2 & 1\end{bmatrix}$$

$$rest time: more examples of diagonalizetion, why $A = P = P = P^{-1}$.
$$= \begin{bmatrix}1 & 1\\ -2 & -1\end{bmatrix} \begin{bmatrix}-3^{k} & -3^{k}\\ 2 & 5^{k} & 5^{k}\end{bmatrix} = \begin{bmatrix}-3^{k} + 25^{k} & -3^{k} + 5^{k}\\ 2 & 5^{k} - 2 & 5^{k} & 5^{k}\end{bmatrix}.$$$$

N