Math 2130. Lecture 33.

04.07.2021.

Last time: defined eigenvectors and eigenvalues of Square matrices.
(motivation for sendying eigenvectors
Def: Let A be a square matrix. An eigenvector of A is a monzen Vector V to
st.
$$AV = \lambda V$$
 for some scalar λt (R. Sinch a scalar is called an eigenvalue
of A.
Eq: If $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $W = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, then $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ for any $\lambda \in IR$, $Aw = \begin{bmatrix} 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ for any $\lambda \in IR$, $Aw = \begin{bmatrix} 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ for any $\lambda \in IR$, $Aw = \begin{bmatrix} 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$. W
So V is not an evect of A, but wis and has eigenvalue 0.

Today: the characteristic polynomial , finding ligenvalues.
An important observation: Let A be an nixed metrix and let
$$T: R^n \to R^n$$

be the associated map given by $T(V) = A \cdot V$.
For any constant $\lambda \in R$ and vector $V \in (R^n, we have
 $Av = \lambda V \iff AV = (\lambda \cdot \overline{I_n}) \cdot V \iff (A - \lambda \overline{I_n}) \cdot V = 0 \iff U \in Null(A - \lambda \overline{I_n})$
In particular, λ is an eigenvalue of $A \iff$ there is a nonzero $V \in Null(A - \lambda \overline{I_n})$
 $in Charsion: V \times \in R, \chi$ is an eigenvalue of $A \iff$ det $(A - \chi \overline{I_n}) = 0$.$

Upshot: (i)
$$\forall x \in \mathbb{R}$$
, χ is an eigenvalue of $A \iff det(A - \chi I_n) = 0$.
(ii) If $\lambda \in \mathbb{R}$ is an eigenvalue of A , then $\forall \Pi \circ \omega \circ V$. $e - \forall ex of A$
The observations will allow us to
(i). find all $e - \forall alnes$ of $A \implies to dag$.
(i). find all $e - \forall alnes$ of $A \implies to dag$.
(i). find all $e - \forall alnes$ of $A \implies to dag$.
(i). find all $e - \forall alnes$ of $A \implies to dag$.
(ii). find all $e - \forall alnes$ of $A \implies to dag$.
(iii). find all $e - \forall alnes$ of $A \implies to dag$.
(i). for each eigenvalue of A , find all investionally eigenvectors.
What's det $(A - \chi I)$ like? $e_{\mathcal{B}}$, $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies det \begin{bmatrix} 1 - \chi & 2 \\ 4 & \chi \end{bmatrix} = (1 - \chi)(4 - \chi) - 2.3$
Answer: It's a polynomial in χ .
Def. We could the polynomial $char(\chi) = det(A - \chi I)$ the characteristic polynomial of A .
Then. (By (i)) A scelar λ is an evolve of $A \iff \lambda$ is a root of $char_A(\chi)$.

Ex Find all e-values of
$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
.
Solve: We compute char_A(x) = det $\begin{bmatrix} 5-x & 3 \\ 3 & 5-x \end{bmatrix} = \begin{bmatrix} 5-x)^2 - 3.3$
 $= 25 - 10x + x^2 - 9$
 $= x^2 - 10x + 1b$
To find the e-values of A, we can The e-values of A one 2
 $pr = x^2 - 10x + 1b$
To find the e-values of A, we can The evalues of A one 2
 $pr = x^2 - 10x + 1b$
 $pr = x^2 - 10x + 1b = (x - 8)(x - 2), = 2$ the roots are 2 and 8.

Eq. Find all e-values of
$$G = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
.
Solut: $char_{\theta}(x) = det \begin{bmatrix} 1-x & 3 & 3 \\ -3 & -5-x & -3 \\ 3 & 3 & 1-x \end{bmatrix} = (1-x) \begin{vmatrix} -5-x & -3 \\ 3 & 1-x \end{vmatrix} - 3 \cdot \begin{vmatrix} -3 & -3 \\ 3 & (-x) \end{vmatrix}$
 $+ 3 \cdot \begin{vmatrix} -3 & -5-x \\ 3 & 3 \end{vmatrix}$
 $= (1-x) \begin{bmatrix} (-5-x)(1-x) - 3 \cdot (-3) \end{bmatrix} - 3 \begin{bmatrix} -3(1-x) - 3 \cdot (-3) \end{bmatrix}$
 $+ 3 \cdot \begin{bmatrix} -3 & -5-x \\ 3 & 3 \end{vmatrix}$
 $= (1-x) \begin{bmatrix} (-5-x)(1-x) - 3 \cdot (-3) \end{bmatrix} - 3 \begin{bmatrix} -3(1-x) - 3 \cdot (-3) \end{bmatrix}$
 $= (1-x) \begin{bmatrix} -5-x + 5x + x^2 + 9 \end{bmatrix} - 3 \cdot \begin{bmatrix} -3 + 3x + 9 \end{bmatrix} + 7 \cdot \begin{bmatrix} -9 + 15 + 3x \end{bmatrix}$
 $= (1-x) (\frac{x^2 + 4x + 4}{(x+1)^2} - 3(3x+6) + 3(3x+6) = (1-x)(x+2)^2$

Since
$$\operatorname{char}_{B}(x) = ([-x)(x+z)^{2}$$
, it has roots $| \operatorname{cnd} - z$.
 $-(x-1)(x-(z))^{2}$
So the eigenvalues of B are $| \operatorname{cnd} - z$.
Def. (algebraic multiplicity) Note that λ is an evalue of $A \iff \lambda$ is
a post of char_{A}(x) $\iff (x-\lambda)$ is a linear factor of $\operatorname{char}_{A}(x)$.
The multiplicity with which the term $(x-\lambda)$ appears in $\operatorname{char}_{A}(x)$ for
a evalue λ is called the algebraic multiplicity of λ .
Eq. In our first example, the e-values 2 and 3 of A each has elg. multiplicity.
In the second example, one evalues [and -z have eig. multiplicity,] and 2, resp.

Now we know how to find eigenvalues of a square matrix
$$A$$
.
If we know λ is an eigenvalue, how dv we find its e-vectors?
Recall: given an e-value λ of A , U is a curr. e-vect \Leftrightarrow $0 \neq v \in Null (A-\lambda I)$.
Eq: Take our $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ and its e-value Z .
 V is an e-vect \Leftrightarrow $0 \neq v \in Null (A - zI) = Null (\begin{bmatrix} 5 \cdot 2 & 3 \\ 3 & 5 \cdot 2 \end{bmatrix}) = Null (\begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix})$.
 V is an e-vect \Leftrightarrow $0 \neq v \in Null (A - zI) = Null (\begin{bmatrix} 5 \cdot 2 & 3 \\ 3 & 5 \cdot 2 \end{bmatrix}) = Null (\begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix})$.
 V e-value $\lambda^{2} = \begin{bmatrix} 0 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 3 & 7 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 3 & 0 \\ 3 & 7 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $V = vectors v/e in R^{2}$
 $V = vectors v/e inder R = vectors v/e e-vectors v/e-vectors v/e$