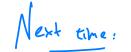


Eq.
$$V = |R^2$$
, $T = refl.$ with the line $Y = \chi$.
 $B_1 = \{[j], [n]\} \rightarrow [T]_{B_1}^{B_1} = [T([n])]_{B_1} [T([n])]_{B_1}] \qquad [m]_{B_1}^{[n]} = [m]_{B_1}^{[n]} [m]_{B_2}^{[n]} = [m]_{B_1}^{[n]} [m]_{B_2}^{[n]} = [m]_{B_2}^{[n]} [m]$

Note: Given a linear map
$$T: (\mathbb{R}^n \to \mathbb{R}^m$$
. We introduced the
standard matrix of T as the matrix $A_{\overline{1}} = [T[e_1]_1^i \cdots [T[e_n]]$
(laim: $A_{\overline{1}} = [T]_{\overline{1}}^C$ where $B_{\overline{1}\overline{3}}$ the standard matrix of $I\mathbb{R}^n$ and
 $C_{\overline{1}\overline{3}}$ the standard matrix of $I\mathbb{R}^n$.

Eigenvectors and eigenvalues [Let A be an nxn matrix.
Def: (eigenvector and eigenvalues of a matrix) An eigenvector of A is a
vector vie is st. (i)
$$v \neq 0$$
 and (i) $Av = \lambda v$ for sume contant $\lambda \in IR$.
In this case, the constant λ is called an eigenvalue of A and we
say that v is an eigenvector of A conservations to λ .
Eq. [et $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, then $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ are v_1 pages
eigenvectors of A conservations of $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = v_1$.
Av_1 = $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = v_1$.

Eq. Let
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
. Are the vector $V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $V_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $V_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$
eigenvectors) of A ?
Subs: $AV_1 = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix} = 5V_1$. $Av = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \neq \lambda.w$
 $Av = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \neq \lambda.w$
 $Av = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 1.V_3$.
So V_1, V_2, V_3 are $e - Vee$. of A with $e - values$ $5I[-]$, respectively.



and then ad the e-vectors conv. to each e-value.

We'll leave how after the midtern.