$$\begin{split} \overline{EX!} & |s \ S= \frac{1}{2} \ p(t) | \ p(o) = v \ regimes a subspace of P_{n} for some n? The set of single-variable poly. Solu: [a, is a subspace of P_{n} for every n. of degree at more n. To do: check that for all n, S satisfies the conditions.
$$\begin{split} \overline{EX!^{2}} & |s \ S= \frac{1}{2} \left[\frac{s+3b}{s-t} \right] : s.t \in [R] \ a \ subspace of $IR^{\frac{9}{2}}$? \\ \hline Yas. \ be cause $it's a \ span." \rightarrow you should make the precise \\ \hline \overline{EX!^{6}} & |s \ S= \left\{ \left[\frac{-a+t}{a-bb} \right] : a, b \in [R] \right\} \in [R^{\frac{3}{2}} a \ subspace of $IR^{\frac{9}{2}}$? \\ \hline EX!^{6} & |s \ S= \left\{ \left[\frac{-a+t}{a-bb} \right] : a, b \in [R] \right\} \in [R^{\frac{3}{2}} a \ subspace of $IR^{\frac{9}{2}}$? \\ \hline EX!^{6} & |s \ S= \left\{ \left[\frac{-a+t}{a-bb} \right] : a, b \in [R] \right\} \in [R^{\frac{3}{2}} a \ subspace of $IR^{\frac{9}{2}}$? \\ \hline EX!^{8} & See \ Ex (2, \& Ex.[b]. \end{split}$$$$

4.6.
$$2 \& 4$$
. Given A and $EF(A)$, find bases for $ColA$, $R_{ivi}A$,
and $NulA$.
 \rightarrow (onsult the corresponding algorithms.
 $6 \& 8$. Use the roak-nuclity therem :
 $dim(NulA) + rankA = # cls of A$.
 $(dm(ColA))$
and use the fact that $ColRankA = ColRank\overline{A}$
 $\begin{bmatrix} i & 2 & 3 \\ 0 & 1 & 5 \end{bmatrix}$