Math 2130. Lecture 19.

03.03.2021.

Last time: Algorithm for checking invertibility and computing inverses
Today: More example application, justifying the algorithm.
Nevertible linear maps. Relation to matrix inversion.
Start § 2.8. Subspaces of (Rⁿ.
I. Review of the algorithm
E.
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{f}_{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{f}_{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

E. $A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} \\ 0 & -\frac{1}{3} \end{bmatrix}$.
E. $A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} \\ 0 & -\frac{1}{3} \end{bmatrix}$.

Why the algorithm works:
(1) Every eit row op can be realized by left must by a matrix.
(a) Scaling by a normer on number
$$\begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -5 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix}$$

(b) interchanging two rows. eq. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \longrightarrow \begin{bmatrix} 7 & 8 & 9 \\ 4 & s & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
(c). adding a multiple of a row to another row $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \frac{1}{2^{4}} \longrightarrow \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
Fant: For each eff row op , we can find a motion E such that E .
apply the op to A result in EA .

(2). Matrices of the firm E mentioned in (1) are all invertible. "elementary row matrices"

B). Why the algorithm works: if $[A|I] \xrightarrow{\text{row ops}} [I|C]$, then we can find elt row matrices $E_{1}, E_{2}, \cdots, E_{T}$ s.t. $\begin{bmatrix} E_{T} - \cdots & E_{2}E_{1}A = I & O \\ E_{T} - \cdots & E_{2}E_{1}I = C & O \end{bmatrix}$

Now,
$$\Omega \Longrightarrow A = (\overline{E_r} \cdots \overline{E_1})^{-1} = \overline{E_1}^{-1} \cdots \overline{E_r}^{-1}$$

s. A is invertible and $A^{-1} = (\overline{E_1}^{-1} \cdots \overline{E_r})^{-1} = \overline{E_r}\overline{E_{r-1}} \cdots \overline{E_2}\overline{E_1} \stackrel{@}{=} C.$

Def: A linear map
$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 Ti called invertible if there is a linear
hep $S: \mathbb{R}^n \to \mathbb{R}^n$ st. $S \circ T = \mathbb{Id}_{\mathbb{R}^n}$ and $To S = \mathbb{Id}_{\mathbb{R}^n}$
where $\mathbb{Id}_{\mathbb{R}^n}$ denotes the identity map with $\mathbb{Id}_{\mathbb{R}^n}(X) = X$ if $X \in \mathbb{R}^n$.
Thus: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map and let A be its standard
hatrix. \mathbb{Ie}_{4} , $T: \mathbb{R}^n \to \mathbb{R}^2$, $\mathbb{Ie}_{4}^n = \mathbb{Ie}_{10}^n \mathbb{Ie}_{4}^n = \mathbb{Ie}_{10}^n \mathbb{Ie}_{4}^n$.
The following use equivalent: (1) T is \mathbb{Ie}_{10}^n .
(3) T is surj (4) T if \mathbb{In}_{10}^n (5) T is both \mathbb{In}_{10}^n and \mathbb{Inv} .
(6) $\mathbb{EF}(A)$ has zero rows.

Movesher, if T is invertible (hence A is inv.), then the standard matrix of
T⁻¹ T1 A⁻¹, i.e., T⁻¹(x) = A⁻¹.x. D
So A is inw and A¹ =
$$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
, then the standard matrix of
T⁻¹ T1 A⁻¹, i.e., T⁻¹(x) = A⁻¹.x. D
Let T: $(R^2 \rightarrow R^2)$ be the map that first reflects points across $Y = X$
and then $reflects$ points across the X-axis. Is T invertible? Is so, find
the formule for the inverse map.
Substitute $T(e_1) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, S_1 $A = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.
Method 2. $B = \begin{bmatrix} A | I \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

By the theorem,
$$T'(v) = A' \cdot v$$
, it; $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$.

Eq. Find the inverse map of the linear map
$$T_1 IR^2 \rightarrow IR^2$$
, $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x - 3y \\ y \end{bmatrix}$.

$$\frac{Silh:}{Silh:} \text{ Note that the standard motify } A \text{ of } T \text{ is } \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}.$$

$$(\text{ two vays to get } A \text{ of } A \text{ of } T \text{ is } \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}.$$

$$(\text{ two vays to get } A \text{ of } A \text{$$

3. Subspaces of IR"

The set IR" is an example of a Vector space. We'll define subspace) of (Rⁿ. Def: A subset S = IR" of IR" is called a subspace of IR" if (1) the zero vector ["] of IR" is in S. "closure under (2) for all U, JES, we have UEVES as wel. and is for all VES and CER, we have CVES as wel. Examples Nonexamples. (a). N=2. S={[1]}: Sis not a subspace; it violates all of (1) - 13)

1b)
$$S = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \subseteq |\mathbb{R}^{2} : \text{ not a subspace of } |\mathbb{R}^{2} : \text{ it satisfier} \\ (and ithin (1)) but fails Conditions (2) and (3). Next one:
(a) take $u = v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, when $u = v = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \notin S$. More besize profised by the subspaces of $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $c = 3$, then $cv = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \notin S$. More besize profised by $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, c = 3$, then $cv = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \notin S$.
(c), $S = \int \begin{bmatrix} 0 \\ 0 \end{bmatrix} \bigvee \subseteq (\mathbb{R}^{2})$; S satisfies all of $(1) = (3)$, so it's a subspace.
(d) For any n and any $v \in (\mathbb{R}^{2})$, the set $S = Span fv = \{cv \mid c \in \mathbb{R}\}$
is a subspace of (\mathbb{R}^{2}) ; $(1), o = o \cdot v \in S \ 1 = i^{2} O(1) + cv = (c_{1}c_{2}) \vee c S)$
(3) $d(cv) = (de) \vee eS$. $\sqrt{2}$$$