Math 2130. Lecture 17.
Last time: invertibility vs. cancellation:
$$(A^{x}=b \ A^{xv}) \rightarrow x = A^{-1}b$$

. properties of matrix inverses: $(A^{-1})^{-1} = A$, $(AB)^{-1} = 15^{+}A^{-1}$, $(A^{-1})^{-1} = A^{-1}$.
. characterization of invertible matrices: Inverse map
(Important construction: A. nxn matrix $\rightarrow T_A : (R^n \rightarrow 1R^n, x \rightarrow Ax)$
(s. A is the standard metric of T_A).
A is inv $\implies T_A : is injective$
In fact, \in also unles by the "Invertibility Thm"...

Question: Why are the two sides of [equivalent?
Answer: Because A is square.
(c) holds (
$$\Rightarrow$$
 # pivots of $A = \# cols of A = n$
 \Leftrightarrow # pivot of $A = n = \# rous \neq A$
 \Leftrightarrow every row in A has a pivot, i.e. (d) holds,
In picture:
(c) \Rightarrow $(a') = approximation in the pivot, i.e. (d) holds,
 $(\# \oplus approximation in the pivot, i.e. (d) holds,
($\# \oplus approximation in the pivot, i.e. (d) holds,$
 $(\# \oplus approximation in the pivot, i.e. (d) holds,
($\# \oplus approximation in the pivot, i.e. (d) holds,$
 $(\# \oplus approximation in the pivot, i.e. (d) holds,$
 $(a') : REF(A) = In,$
So, we've argued that $(a') \cong (b) \cong (c) \dots \cong (c)$.$$$

$$A = \begin{bmatrix} 1 & 7 \\ -3 & -6 \end{bmatrix} \sim \begin{bmatrix} 0 & 7 \\ 0 & (5) \end{bmatrix}$$
 since there's a pixt in every cl

$$P = P = EF(A) .$$

$$ef = EF(A) , A must be invertible .$$

$$A' = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} .$$

$$EF(A')$$
Since there's a zero row in EF(A), A cannot be invertible.
Rink : We haven't explained why (a) is implied by the conditions (a'), (b) - (ci).
We haven't explained how to find A'' for an inv. matrix A either. We'll do these things next week.