Math 2130. Lecture 15. Midderm I Review: Online NOW!
Last time: Properties of matrix multiplication:
1). (Whenever the following expressions make sense, we have)

$$A (B+c) = AB + Ac$$
 (A+B) $c = Ac+Bc$
 $(rA) B = r(AB) = A(YB)$
 $A (Bc) = (A B) c$ easy to state, harder to prove $\rightarrow M_{soT} = M_{s} \cdot M_{T}$.
 $ImA = A = AIm$ if A is maxim.
12). Failures: In general, matric must is not commutative and has
 $ho concellation law$
 $AB = Ac$ $\neq B = c$, $AB \neq D \neq (A=s \text{ or } B=o)$.

1. Martin powers

Q: Given an man matrix A, under what conditions does A. A marke sense?

A: The condition should be
$$\# cols of A = \# rows of A$$
, i.e., $m \ge n$, *i.e.*, $A = 1$
Note: When A is square, we may form the power $A^{k} = A \cdot A \cdot \dots \cdot A$ for any $M \cdot \dots \cdot K \ge 0$.
 \therefore Just as we define $\chi^{\circ} = 1$ for any nonzero number $\chi \in IR$, leg.
 we define $A^{\circ} = In$ for any $n \times n$ matrix A .
 $A^{\circ} = A \cdot A \cdot A \cdot A$
 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow A^{\circ} = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} A^{1} = A = A^{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix} A^{3} = A^{2} = \begin{bmatrix} 37 & \cdots \\ 15 & 22 \end{bmatrix}$

2, Matrix transposition
Def: The transposition
Def: The transpose of an maximatrix
$$A$$
 : the name matrix B
s.t. B : $j = A_j$; , i.e., the matrix whose vows are the colds of A and
We denote B by A^T .
 E_2^{T} : $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \longrightarrow A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$.
 $B = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 5 \end{bmatrix} \longrightarrow B^T = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 5 \end{bmatrix}$
 $(AB)^T = B^T A^T$. $\begin{bmatrix} Lels = \left(\begin{bmatrix} a^{-b} & 2a^{+3b} & a^{+5b} \\ c^{-d} & 2c^{+3d} & c^{+5d} \end{bmatrix} \right)^T = \begin{bmatrix} a^{-b} & c^{-d} \\ actb & c^{+5d} \end{bmatrix}$
 $RHS = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a^{-b} & c^{-d} \\ 2ar3b & 2ar3b \\ arsb & crist \\ arsb & crist \end{bmatrix}$

(Typ: Assuming the following expressions nake serve, we have
(a)
$$(A^{T})^{T} = A$$
. (b) $(A + B)^{T} = A^{T} + B^{T}$,
(c) $(YA)^{T} = -rA^{T}$ $\forall Y \in IR$, (d) $(AB)^{T} = -B^{T}A^{T}$.
Pf: (a) We know if A is maximal, then A^{T} is name, and hence
 $(A^{T})^{T}$ is maximal. so it suffices to show $[(A^{T})^{T}]_{ij} = A_{ij}^{V}$ $\overset{V| \leq i \leq n}{I \leq j \leq m}$.
 $[(A^{T})^{T}]_{ij} = [A^{T}]_{ji} = A_{ij} \cdot \sqrt{I}$
(b). (c). Similar (but even easier)
(d). Say A is maximal B is map. Then $\forall I \leq i \leq p$, $(B^{T}) \cdot CQ(A^{T})^{T}$
 $[(AB)^{T}]_{ij} = [AB]_{ji} = Row_{j}(A) \cdot Coli(B) = Cl_{j}(A^{T}) \cdot Row_{i}(B^{T}) = Row_{i}(B^{T}) \cdot CQ(A^{T})$

.

Det. Let A be a square non matrix. We say that A is invertible if there is an new matrix B s.t. AB = In = BA. In this case, we say that B is an inverse of A. Point: if A is invertible. \overline{Eq} , $A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$, $B = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$. we can speak of the inverse of A and denute $AB = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix} \quad BA = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$ $AB = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $BA = \begin{bmatrix} 0 & 1 \end{bmatrix}$ it by A^{-1} . So $AB = I_2 = BA$, so A is invertible and B is an inverse of A. Rmk: (fA is invertible, then it must have a unique inverse: say B.B'

Remarks:

. Note that we any discuss invertibility for equare matrices. . If a square montrix A is invertible, say with inverse B. then AB = In = BA for some n. Then BA = In = AB, so B is also muertible and A is its invene. In other words, we have $(A^{-1})^{-1} = A$ if A is invertible. . The notion of invertibility has to do with "cancerlappility" and is actually familiarly. $2\chi = 6 \longrightarrow 1.\chi = 3$ $\sum_{i=1}^{n} 2\chi = 1$ $\sum_{i=1}^{n} 2\chi = 1$ $\sum_{i=1}^{n} 2\chi = 1$ if A is inv. then the matrix equation Ax = b has a unque solu $X = A^{-1}b$ more next time.