Last time: Geometric linear transformations in IR?:

reflections, projections, expansions/contractions, Shearing, rotations

Done with Ch. 1!

Today. 2.1. Matrix operations

Notation: (A_{ij}) Given on $m \times n$ matrix A, we use A_{ij} to denote the entry on the ith vow, jth sl of A for all $1 \le i \le m$, $1 \le j \le n$.

1. Addition and scalar multiplication

. Given two matrices AB of the same shape, Say both mxn, we define their sum to be the mxn matrix ABB with $(A+B)_{ij} = A_{ij} + B_{ij}$.

· Given a natrix A and a scalar CEIR. We define the scalar onlyppe say, mxn

CA to be the matrix with $(cA)_{ij} = cA_{ij}$.

Eq. Let
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$
. $B = \begin{bmatrix} 6 & 1 \\ 7 & -10 \\ -1 & 5 \end{bmatrix}$. Compute $5A$, $3A - B$

$$5 \cdot A = \begin{bmatrix} 15 & 10 \\ -5 & 5 \\ 0 & 5 \end{bmatrix}$$
, $3A - B = \begin{bmatrix} 9 & 6 \\ -3 & 3 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 6 & 1 \\ 7 & -10 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ -10 & 13 \\ 1 & -2 \end{bmatrix}$.

Pmp. Let A, B, C be matrices of the same shape. Let $r, s \in \mathbb{R}$ be orbitrary scalars. Then $[r(A+B)]_{ij} = r[(A+B)]_{ij} = r[(A+B)]_{ij}$ (1) A + B = B + A (2) (A + B) + C = A + (B + C) r[A] = r[B]; r[B] = A (4). r(A + B) = rA + rB (3). A + O = A (4). r(A + B) = rA + rB (5 calar meth. dist. open mat. coldition) (6). Y(SA) = (rS)A $(5). \quad (r+s)A = rA + sA$ Pf: These all hold because (i) they hold for number (ii) the mat. op, are coordinate vile. (scalar mult. dist over scalar addition)

operation, and the interactions of diff. operations.

Theme of the section: We'll be interested in the properties of matrix

$$Y=2$$
. $A=\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$. $B=\begin{bmatrix} 1 & 0 \\ 5 & 0 \end{bmatrix}$.

$$LHS = 2\left(\begin{bmatrix}21\\-13\end{bmatrix} + \begin{bmatrix}10\\50\end{bmatrix}\right) = 2\begin{bmatrix}24\\-145&340\end{bmatrix} = \begin{bmatrix}2(24)&2(140)\\2(145)&2(340)\end{bmatrix}$$

$$RHS = 2 \cdot \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} + 2 \cdot \begin{bmatrix} 1 & 0 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 2 \cdot 2 & 2 \cdot 1 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot (-1) & 2 \cdot 3 \end{bmatrix} +$$

2. Matrix multiplication.

Recall that

· (inner product) For any row vector $\vec{r} = [a_1 \ a_2 \ --- \ a_n]$ and ch were

= | b, b of the same length, we defined their inner product to be

the number $\vec{r} \cdot \vec{c} = a_1b_1 + a_2b_2 + \dots + a_nb_n$.

· (matrix-vector product.) Given an mxn natrix $A = \begin{bmatrix} \overrightarrow{r_1} \\ \overrightarrow{r_m} \end{bmatrix}$ and a vector $\overrightarrow{c} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, then the product $A\overrightarrow{c}$ equals. $A\overrightarrow{c} = \begin{bmatrix} \overrightarrow{r_1} \cdot \overrightarrow{c} \\ \vdots \\ x_m \cdot \overrightarrow{c} \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/(-1) + 2.0 + 3.2 \\ 4.(-1) + 5.0 + 6.2 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$

define the product AB as follows. Say A is man and B is nager 1) (viz most-dec products) write
$$B = \begin{bmatrix} \overline{c_1} & \overline{c_2} & \dots & \overline{c_p} \end{bmatrix}$$
 and take $AB = \begin{bmatrix} A\overline{c_1} & A\overline{c_2} & \dots & A\overline{c_p} \end{bmatrix}$ (viz now-col inner products) equivalently, we define $AB + be$ the natrix 14.
$$(AB)_{i,j} = \begin{bmatrix} \overline{c_1} & \overline{c_2} & \dots & \overline{c_p} \\ \overline{c_1} & \overline{c_2} & \dots & \overline{c_p} \end{bmatrix}$$
 where $A = \begin{bmatrix} \overline{c_1} & \overline{c_2} & \dots & \overline{c_p} \\ \overline{c_1} & \overline{c_2} & \dots & \overline{c_p} \end{bmatrix}$ (in particular, AB is $\overline{c_1} = \overline{c_2} = \overline{c_1} = \overline{c_2} = \overline{c_2}$

Def. Let A,B be normen. If # cli of A = # NWI of B, then we

Continued Eq.
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_1 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Continued Eq. $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} r_2 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 &$

(1). Via matrix. Veet product
$$AB = \left[A_{C_1} \middle| A_{C_2} \middle| A_{C_3} \right] = \left[\begin{matrix} 1 \\ -1 \end{matrix} \right]$$

$$AB = \begin{bmatrix} Ac_1 & Ac_2 & Ac_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} r_{1} \cdot c_{1} & r_{1} \cdot c_{2} & r_{1} \cdot c_{3} \\ r_{2} \cdot c_{1} & r_{2} \cdot c_{2} & r_{2} \cdot c_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}.$$

 $\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} = \begin{bmatrix}
1 \cdot | + | \cdot 3 \\
1 \cdot | + | \cdot 3
\end{bmatrix}
\begin{bmatrix}
1 \cdot 2 + | \cdot 4 \\
4 & 6
\end{bmatrix}$ Note, matrix must (for square matrices) is nut defined coordinateurise! $\left[\begin{array}{c|c} 1 & 2 & 3\end{array}\right] \left[\begin{array}{c} 3 & 1 \\ 0 & 0 \\ -1 & -2 \end{array}\right] = \left[\begin{array}{c} 0 & -5 \end{array}\right] \cdot \left(\begin{array}{c} (m \times n) \\ (m \times n) \end{array}\right) \cdot \left(\begin{array}{c} (m \times p) \\ \end{array}\right)$ Pont: multiplying with $\begin{bmatrix} 2 & 0 & 0 \\ 0 & (& 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 7 & 5 & 1 \\ 2 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 7 & 5 & 1 \\ -6 & 3 & 6 \end{bmatrix}$ drag (a,, az, -, an) on the left simply scales diag (2.1,-3) Next time: properties of mult. $\begin{cases} A(B+C) = AB + AC \\ AB = BA \\ + \text{ more} \end{cases}$ Rowi by a: Y 15 i sm.