Math 2130, Lecture 11.

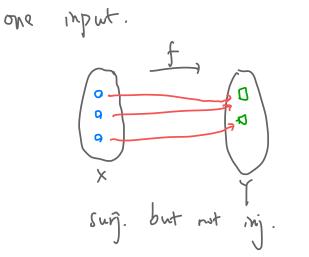
02.10.202

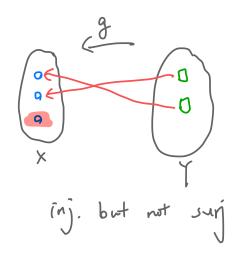
Last time. (a) Examples and formulas of linear vs. non-linear maps
(b) Linear maps = matrix multiplication
Today. Making (b) precise, at a thm.
Some terminology for linear maps.
Some georetric linear maps on
$$(R^2, U)$$

 $R^2 = \frac{1}{2} \left[\frac{y}{2x} \right] \times \left[\frac{y}{2x} \right] = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}$

1. Linear maps = matrix multiplication.
Then let
$$T: (\mathbb{R}^n \to (\mathbb{R}^n \text{ be a linear map})$$
. Then there exists a lingue
mixer matrix M st. $T(\vec{v}) = A \cdot \vec{v}$. In fact, A is the matrix
 $A = \left[T(e_i) \mid T(e_i) \mid \cdots \mid T(e_n)\right]$ where $\{e_i, e_2, \cdots, e_n\}$ is the standard basis
of $(\mathbb{R}^n \cdot$
Def: We could the natrix A the standard
matrix of T .
 $E(y) \mapsto \begin{bmatrix}2x + y\\ -x - y\end{bmatrix}$
Key Idea: We'll often study a linear map T
via its standard matrix.
 $T(e_i) = T([o]) = [o]$

2.
$$\left[\max_{i} q_{i} \right]$$
, $\left[\max_{i} q_{i} \right]$, $\left[\max_{i} q_{i} \right]$, $\left[\max_{i} q_{i} \right]$, $\left[\max_{i} q_{i} \right]$, $\left[\max_{i} q_{i} q_{i} \right]$, $\left[\max_{i} q_{i} q_{i} q_{i} \right]$, $\left[\max_{i} q_{i} q_{$





An equivalent def of mjetning. Let
$$T: (\mathbb{R}^n \to (\mathbb{R}^m \text{ be a linear map}]$$

Prop. The linear map T Π injective iff ker $T = f \circ f$.
(So some people define an mj . linear map to be a linear map with kernel $\{i\}$.)
Pf: "only if": Suppose $T \Pi$ inj. Take $\vec{v} \in \ker T$. Then $T(\vec{v}) = \hat{\sigma}$.
On the other hand, we know that $T(\vec{v}) = \hat{\sigma}$. So $\vec{v} = \hat{\sigma}$. Therefore ker $T = f \circ f$.
"if": Suppose ker $T = f \circ f$. Let \vec{v}, \vec{v}' be such that $T(\vec{v}) = T(\vec{v}')$.
Then $T(\vec{v} - \vec{v}) = T(\vec{v}) - T(\vec{v}') = \hat{\sigma}$, so $\vec{v} - \vec{v}' = 0$, re., $\vec{v} = \vec{v}'$.

Some translations Let
$$T: IR^{n} \rightarrow IR^{m}$$
 be a linear map and
let A be the standard matrix of T .
(a) $\left(| mage vi. Span Membership \right)$
For a fixed $\overline{W} \in IR^{m}$, we have
 $\overline{w} \in [m]$
 $(m]$
 $(m]$