Math 2001. Proof Problems, Part 4 (Mathematical Induction)

Prove the following statements.
(1) In the Fibonacci sequence, we have $F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1$.
(2) In the Fibonacci sequence, we have $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$.
(3) The n-th Fibonnaci number F_{n} is even if and only if $3 \mid n$.
(4) We have $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for every positive integer n.
(5) Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are sets in some universal set U, and suppose $n \geq 2$. Then $\overline{A_{1} \cap A_{2} \cap \cdots \cap A_{n}}=\bar{A}_{1} \cup \bar{A}_{2} \cup \cdots \cup \bar{A}_{n}$.
(6) If $n \in \mathbb{Z}_{>0}$, then $1 / 1+1 / 2+1 / 3+\cdots+1 /\left(2^{n}-1\right)+1 / 2^{n} \geq 1+n / 2$.

