Math 2001. Proof Problems
(direct proofs of conditional statments)

Prove the following statements.
(1) (Ex.4.4) Suppose $x, y \in \mathbb{Z}$. If x and y are odd, then $x y$ is odd.
(2) (Ex.4.10) Suppose $a, b \in \mathbb{Z}$. If $a \mid b$, then $a \mid\left(3 b^{3}-b^{2}+5 b\right)$.
(3) (Ex.4.13) Suppose $x, y \in \mathbb{R}$. If $x^{2}+5 y=y^{2}+5 x$, then $x=y$ or $x+y=5$.
(4) (Ex.4.16) If two integers have the same parity, then their sum is even.
(5) (Ex.4.20) If a is an integer and $a^{2} \mid a$, then $a \in\{-1,0,1\}$.
(6) (Ex.4.26) Every odd integer is a different of two squares. (For example, $7=4^{2}-3^{2}$.)

