Math zool. Lecture 37.

04. 25. 2022.

Last time: partitions from equiv. rels: If Ris an equiv. rel. on a set A, then

· [a] = [b] @ aRb

· [[a]: ae A] partition A.

Today: (familiar) basic notions on functions

domain, codonain. composition, injectivity, surjectivity.

Next time: Course review

1. Definitions and notations

Def (Def 12.1, function) A function from a set A to a set B is a rule that assigns one lunique) elt in B to each elt in A. If an elt at A is assigned the ordput bt B, we write f(a) = b. another vay to encode this, Def (domain and range) For a function $f: A \rightarrow B$, (a, b) we call A the domain of f and B the zodomain of f.

The range or image of f 75 the set $in(f) = \{f(a) : a \in A\}$.

Note: (n general the image of a function f may not equal its advanced.) Eig. For $f: \mathbb{R} \to i\mathbb{R}$ given by $f(x) = x^2$, we have codomain $(f) = (\mathbb{R} \times x^2) = x^2 = x^2$

Det (Det 12.3, equality of functions) Two functions
$$f: A \rightarrow B$$
 and $g: C \rightarrow D$ are equal if $A = C$ and $f(a) = g(a)$ $\forall A \in A = C$.

Some behavior on the entired shared domain

Eq. $\left(f: R \rightarrow IR, f(x) = \chi^2 \ \forall x \in IR\right) = \left(g(x) = IR \rightarrow IR_{\geq 0}, g(x) = \chi^2 \ \forall x \in IR\right)$

Det (Det 12.5. composition) Suppose $f: A \rightarrow IR$ and $g: B \rightarrow C$ are function. Then the composition of f with g is the function $g \circ f: A \rightarrow C$ set.

 $g \circ f(a) = g(f(a))$ $\forall a$

Eq. If $f: R \rightarrow IR$ are $g: |R \rightarrow IR|$ are given by $f(x) = \chi^2 + 2\chi + |R|$.

Thm. (Thm 12.5) Composition II associative, that is, if $f: A \to B$, $g: B \to C$, and $h: C \to D$ are functions, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Dec B Be A $C \in A$ If: Both $(h \circ g) \circ f$ and $(g \circ f) \circ f$ have domain $(h \circ g) \circ f \circ f$.

Dec B Be A $(f \circ f) \circ f \circ f$.

The first of $(h \circ g) \circ f \circ f$ and $(g \circ f) \circ f \circ f \circ f$ and $(g \circ f) \circ f \circ f \circ f \circ f$.

The first of $(h \circ g) \circ f \circ f \circ f \circ f \circ f \circ f$ and $(h \circ g) \circ f \circ f$.

$$GGGG(a) = h(g \cdot f)(a) = h(g \cdot f \cdot a) = h(g \cdot f \cdot a)$$

So $[(h \circ g) \circ f](a) = [h \circ (g \circ f)](a)$, therefore $(h \circ g) \circ f = h \circ (g \circ f)$.

2. Injectivity, surjectivity, and bijectivity

Contrapositives

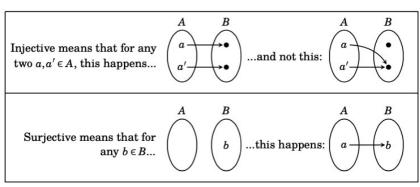
injective (or one-to-one) if
$$\forall a, a' \in A$$
, we have $f(a) = f(a') \Rightarrow a = a'$.

equivalently. if $\forall a, a' \in A$, we have $a \neq a' \Rightarrow f(a) \neq f(a')$

(2) Surjective (or onto) if
$$\forall b \in B$$
, $\exists a \in A \text{ s.t. } f(a) = b$.

equivalently if $B = In(f)$.

In pictures:



First Examples:

· f: A -> B

$$f: A \longrightarrow B$$
is sign, but not inj $(z \neq 3 \text{ bwt } f(z) = f(3)).$

-
$$f: A \rightarrow B$$
 if inj but not surj.

How to prove a function
$$f: A \rightarrow B$$
 is ...

(1) Inj: suppose $f(a) = f(a')$ for some $a, a' \in A$ and deduce $a = a'$.

(2) surj = let $b \in B$ and argue that $b = f(a)$ for some $a \in A$.

(3) bij = prove $f \supseteq inj$ and surj.

Examples (sketch)

$$12.4. \quad f: |R| \{o\} \rightarrow |R| \quad \text{w} \quad f(x) = \frac{1}{x} + |A| \quad \text{fix} \{c\} \}$$

Surj? No. I is in the codomain IR, but
$$[\pm \frac{1}{x} + 1 \pm x \in |R|] \le 0$$
.

inj? Yes: $\pm \frac{1}{x_1} + 1 = \pm x_1 + 1 \Rightarrow \pm x_1 = x_2 \Rightarrow x_1 = x_2 \Rightarrow x_1 = x_2$

12.2.5. $f: \mathbb{Z} \to \mathbb{Z}$ $\forall f(n) = 2n + 1 \forall n \in \mathbb{Z}$

Surj? No,
$$2 \neq 2n+1 \quad \forall n \in \mathbb{Z}$$
.
inj? Yes: $2n+1=2n'+1 \Rightarrow 2n=2n' \Rightarrow n=n'$.