Last time: relations: def and notation (a relation on a set A (-) a subset RSAXA)

· def of equivalence relations: relations that are reflexive, symmetric, and transitive.

Today: More on equivalence relations:

- Verifying a relation is an equivalence relation

- partition, from equivalence classes.

1. Verifying a relation is an equivalence relation

E.g. 1. (Congruence, e.g. 11.13) Let $A = \mathcal{Z}$ and let n be an arbitrary pos. int.

Define xRy for x,y & A if x = y (mod n).

Claim: R is an equivalence relation.

E.g. if n=5, then 27 R12 since 27 = 12 (mod 5), and similarly 18 R3.

Pf of the dam. We check that R is refluive, symm, and transitive.

Ref: We need to show XRX $\forall x \in \mathbb{Z}$, i.e., that $X \equiv x \pmod{n}$ $\forall x \in \mathbb{R}$.
This is true since $n \mid 0 = x - x \mid \forall x \in \mathbb{Z}$.

Symm: We need to show that if $\times Ry$ for some $x,y \in \mathbb{Z}$, then $y \in \mathbb{Z} \times \mathbb{Z}$. So suppose χRy , then $\chi \equiv y \pmod{n}$, i.e., $n \mid x-y$. But then $n \mid -(x-y) \equiv y-x$, therefore $y \equiv x \mid mod n$)

yRx.

Tran. We need to show that if xRy one yRZ for some
$$x_1y_1z_1 \in \mathbb{Z}$$
, then xR_3 . Suppose xRy and yRZ . Then xR_3 and xR_3 . xR_3 and xR_3 . xR_3 and xR_3 . xR_3 and xR_3 . xR_3 and xR_3 and xR_3 . xR_3 and xR_3 and xR_3 and xR_3 and xR_3 and xR_3 and xR_3 . It follows that R is an equivalence relation.

Eq. 2. (fractions, $P.2_{13}$) Let $A = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$. Consider the relation R

Eq. 2. (fractions, P. 213) let $A = \left\{ \frac{m}{n} \middle| m, n \in \mathbb{Z}, n \neq 0 \right\}$. Consider the relation R on A defined by $\frac{d}{d} R = \frac{d}{d}$ if ad = bc $d = \frac{d}{d} = \frac{d}{d} = \frac{d}{d}$.

Prove that R is an equivalence rel.

Ei.
$$\frac{2}{5}R\frac{6}{15}$$
 since $2.15 = 5-6$, $\frac{1}{3}R\frac{7}{21}$ since $1.21 = 3.7$.
 $\frac{9}{4}R\frac{9}{17}$ since $0.17 = 0.4$. (R is just being equal')

Pf: We check that R is reflecive, symm. and transitive.

(1). Take $x \in A$, Then $x = \frac{a}{b}$ for some $a.b \in \overline{A}$, $b \neq 0$.

We need to show that XRX, ie., GRE. This holds since ab=ab.

a) Suppose $\times Ry$ for some $\times .y \in A$, say $x = \frac{1}{6}$ and $y = \frac{C}{cl}$ for some $a.b.c.d \in Z$ ($b \neq 0, d \neq 0$). Since $\frac{2}{6}R\frac{C}{d}$, we have ad = bc.

To prove yRx, we need $\frac{C}{d}R_{b}^{a}$, ie. we need Cb = da, which holds by (1), so yRx.

(3). Suppose $\times Rg$ and gR7 for some $\times cg$, $Z \in A$, say w = G, g = G, $Z = \frac{e}{f}$ for some a.b, c, d, e, $f \in Z$ with b, d, f nonzero. Since $\times Rg$, we have $ad^{\frac{12}{3}}bc$; since gR7, we have gR7, we have gR7, gR7, we have gR7, g

We need to show what XPZ, i.e., of = be. (Know: adcf=bcde)
We discuss cases:

(i) If dc +0, then we can divide both sides if (5) by dc to get af=be.

(ii) if dc=0. then c=0 since d=0.

Since $ad = bc = b \circ = 0$ and $0 = 0 \cdot f = cf = de$ and $d \neq 0$.

(t follows that a=0 and e=0. So we have af=be=0.

By (1), (2), and (3), R is an equivalence relation. D

Point: The equivalence closses of R in A=Ze are exactly the returnal numbers,

e.g., $\frac{3}{5} \iff \left[\frac{3}{5}\right] = \left[\frac{6}{10}, \frac{-6}{10}, \frac{30}{50}, \dots\right]$ so R gives us a way of 'constructing the rational numbers from integers'.

z. HW discussion

Induction vs. strong Induction:

ditterence

inductive step.

induction.

using Sic alone

Strong induction

assume all of Si. Sz. --. Sie have all

been proved and prove sky using and of Si, --: Sk.