Last time: Cartesian products of set and related wunting problems

· flower sols of sets

Conjecture: $|P(A)| = 2^{|A|}$

Today: . proof of the conjecture

. set operations and Venn diagrams

union, intersection, difference, complement

 $|P(A)| = 2^{|A|}$

Prop: Let A be a finite set. Then $|P(A)| = 2^{|A|}$. Pf/Explanation: To specify a ruled of A is to determine whether each est of A Should be included or not in the subject. We have 2 chorses for each elt, hence

there are 2×2×~~×2 = 2 |A| choices for the subset. D Eq. A = {abc}, Al = 3. Consider constructing a subset of A. Write x? for "do we include x on the subset?

Start a? Yes $\{a,b,c\}$ $\{a,b,c\}$ $\{a,b,c\}$ $\{a,b,c\}$ $\{a,b\}$ $\{a,c\}$ $\{a,c\}$ a? No > { , } b? Yes } { b }

2. Set sperations: new from old

We now sutroduce some operations to produce new jets out of old ones.

Def: Let A.B be two sets

. The union of A and B is the set AUB := {x: x EA or x EB}

. The Intersection of A and B is the set $A \cap B := \{x : x \in A \text{ and } x \in B\}$

The difference of A and B is the set $(A \setminus B =) A - B := \{x: x \in A \text{ and } x \notin B\}$

Eq. Let $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7\}$, $C = \{2, 6, 7, 9\}$. Then $A \cup B = \{1, 2, 3, 4, 5, 6, 7\} = B \cup A$.

- ANB = { 3,4 } = BNA, ANC = { 2} = CNA.

· A-B= {1,2}. 13-A= {5,6,7} -> Note that A-B \$ B-A.

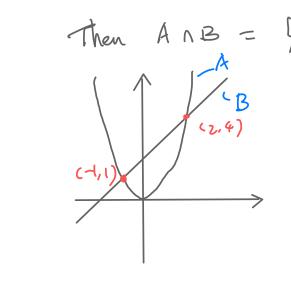
 $A - (BUC) = A - \{2,3,4,5,6,7,9\} = \{1\}.$

2 4 5 [2,5] [3,6] = [2,6] $[2.5] \cap [3.6] = [3.5]$ Note: In general, . A-B+B-A. but AUB=BUA and ANB=BNA. So we S . (AUB) UC = AU(BUC) since book sets consist of ells in at least one of AB, and C. omit the parentheses Similarly, (ANB) $\Lambda C = A \Lambda (B \Lambda C)$ (eth in all of A,B,C) E.x. try to illustrate this with a (Venn) dragram. B C B C

EX Do we always have
$$A \cap (Buc) = (A \cap B) \cup C$$
?

Eq. Consider the sets
$$A = \{ (x, x^2) | x \in IR \} = \{ (x, y) | y = x^2 \} \leq IR^2$$

and $B = \{ (x, x+2) | x \in IR \} = \{ (x, y) | y = x+2 \} \leq IR^2$.
Then $A \cap B = \{ (x, y) | \{ y = x^2 \} \} = \{ (-1, 1), (2, 4) \}$.



Universe: When talking about sets of objects, we often have in mind a universal set or universe. U of "all (relevant) objects".

(Sometimes we will need to specify U, but it's often clear from Context.

Def: The complement of a set A (in a universe U) is the set $\overline{A} := \{x : x \notin A\}$ (= $\{x \in U : x \notin A\}$).

Eq. If $U=\mathbb{Z}$ and A is the set of all even integers, then \overline{A} is the set of all odd integers. If $U=\{1,2,3,4,5,6\}$ and $A=\{2,3,5\}$, then $\overline{A}=\{1,4,6\}$.

Next time: more on set ups/ Venn diagrams.