Last time: practice problems / worksheet on do rect proofs

Today: congruence of integers

Contraposative proof of conditional statements (Ch.5.)

.* recommended practices for nath. writing.

1. Congruence of integers

Def: Let $a,b \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>0}$. We say that a and b are congruent modulo n if $n \mid a-b$. We write $a \equiv b \pmod{n}$ if this is the case and write $a \not\equiv b \pmod{n}$ otherwise.

E.g. $9 \equiv 1 \pmod{4}$ be cause $4 \mid 9 - 1 \pmod{1} \equiv 9 \pmod{4} \mid 1 - 9 \mid 10 \neq 3 \pmod{4}$ because $4 \mid 1 - 9 \mid 10 \neq 3 \pmod{3}$ since $3 \nmid (9 - 1) \mid 10 \neq 3 \pmod{4}$ because $4 \mid 3 - 15 = 2 \mid 3 \pmod{4} \mid 2 \mid 8$.

Note: We have $a \equiv b \pmod n$ iff a and b have the same remainder when divided by n.

e.g. 43 = 4×10+3, 15=4×3+3, 10 43-15 = 4×10-4×3, which is divisible by 4.

Propl: (Modular arithmetre) Let a.b.c. d & Z and n & Z>0. (1) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$. .2) If $a \equiv b \pmod{n}$ and $C \equiv d \pmod{n}$, then $aC \equiv bd \pmod{n}$ 13) If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for every $k \in \mathbb{Z}_{>0}$. Pf: Note that 13) follows from 12) by considering le apries of the congruence a=b (mod n). So it suffices to prove (1) and (2). 2). Suppose a=b (nodn) and c=d (modn). Then a-b=nk and (-d=nl for Some k, l ∈ Z. Thus, we have ac-bd = ac-bc+bc-bd=(ac-bi)+(bc-bd)=(a-b)c+b(c-d)=nkc+bnl=n(kc+bl)So n | ac-bd and ac = bd (mod n), so (2) follows. Ex: Prove (1).

2. Contrapositive proofs

Recall: Every conditional statement "if pohen a" is logically equivalent to 56 Londrapositive statement "if not a then not p".

So, to prove "if P then a" it Is sufficient equivalent to prove "if not a then not P".

Intuitively, it's sufficient to do so because if we know that P connot happen whenever a does not happen, then whenever P does happen a must happen, or we'd get the contradition that P doesn't happen.

why use contrapositive proofs? Because it night be more natural in some could to pass information from the Q-side to the P-side.

Example:
Prop.

Pf 1.

Prop. Let $x \in \mathbb{Z}$. If 7x + 9 is even, then $x \in \mathbb{Z}$ odd.

Pf 1. (direct proof) Suppose 7x + 9 is even. Then 7x + 9 = 2n for some $n \in \mathbb{Z}$.

Thus, (trick:) we have x = 2n - 9 - 6x = 2(n - 3x - 5) + 1

Then x is odd, so we are done.

Pfz. (Contrapositive proof) We prove the contrapositive, ie, we prove that if χ is not odd, then 7x+9 is not even. So suppose χ is not odd. Then χ is even, hence $\chi = 2k$ for some $k\in\mathbb{Z}$. Thus, $7x+9 = 7\cdot(2k)+9 = 14k+9 = 2(7k+4)+1$.

So 7x49 is odd and not even - and we are done.

Prop: Let $a.b \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>0}$. If $12a \not= 12b \pmod{n}$, then $\frac{n+12}{Q}$. Pf: We prove the contrapositive. ie, we prove that if n | 12, then 12a = 12b (mody). So suppose n/12. Then 12=nk for some ke Z. Thus, 12a-12b= 12(a-b) = nk (a-b), so n | 12a-126, hera | 2a = 126 (nod n), as desired. 0 Prop: Let $a,b \in \mathbb{Z}$ and $a \in \mathbb{Z}_{>0}$. If $12a \neq 12b \pmod{n}$, then $a \neq b \pmod{n}$. If We prove the contraposition, i.e., we prove that if $a \neq b \pmod{n}$ then 12a = 12b (mod n). The underlined statement is true by Prop 1.(2). Next time: writing tips , proofs by contradiction (Ch. 6.)