Friday, 11/10-1

Brief digression: standard Deviation of a random variable. (Section 5.2.1)

Part I: Review of expected value.

First, recall that the expected value of an ru X is defined by

$$E(X) = \sum_{x} x \cdot p(X=x), \qquad (x)$$

where the sum is over all possible values X of X.

Example 1.

Consider a binomial experiment, meaning one with only two possible outcomes, a success" and a "failure"

Suppose P(success)=p.

Let X be the number of successes in a <u>single</u> trial. That is, X = 1 if a success occurs, and X = 0 if a failure occurs.

Then by
$$(*)$$
,
$$E(X) = 1 \cdot P(X=1) + O \cdot P(X=0)$$

$$= 1 \cdot P(success) + O \cdot P(failure)$$

$$= 1 \cdot p + O \cdot (I-p)$$

$$= p \cdot$$

This makes intuitive sense: if P(success)=p, then we would expect the number of successes on a successes trial to be p (on average).

Example 2.

Now, suppose our binomial experiment, with P(success) = p, is repeated n times Let X be the number of successes in these n trials. What is E(X)?

Solution. Write

 $X = X_1 + X_2 + \ldots + X_n$

where X; is the number of successes in the jth trial. Then, by the sum rule for expected value,

 $E(X) = E(X,) + E(X_a) + \dots + E(X_n)$ $= p + p + \dots + p = np$

n times

Part II. Variance and stal dev of an rv.

We define the <u>variance</u> var(X) of an rv X by $var(X) = E((X-\mu)^2)$,

where $\mu = E(X)$. We also define the stall dev stal(X) of X by stal(X)= $\sqrt{\text{var}(X)}$.

Example 3.

Find the variance and stol dev of a binomial rv X with P(success) = p.

Solution

we have $var(X) = E((X-\mu)^{\alpha}) = E((X-p)^{\alpha}),$

since we know $\mu = E(X) = p$.

Now X can equal 1 or 0, with probability p and 1-p respectively. So $(X-p)^2$ can equal $(I-p)^2$ or $(O-p)^2=p^2$, with probability p and 1-p respectively. So, by $(X-p)^2=p^2$

$$var(X) = E((X-p)^2) = (1-p)^2 p + p^2 \cdot (1-p)$$

factor = p(1-p)(1-p+p) = p(1-p),

sta(X)=
$$\sqrt{p(1-p)}$$
.

Summary
Let X be a binomial ry, meaning X only
takes the values 1 or 0, where

Then X has expected value E(X) = p,

 $var(X) = E((X-\mu)^{2}) = E((X-p)^{2})$ = p(1-p),
and stal alev

stal(X) = $\sqrt{p(1-p)}$.

Example 4. free throw shooter has an 80% success rate, then the expected number of made shots in a single attempt is

$$E(X)^{\nu} = \rho = 0.8,$$

with stal dev.
with std dev. std(X) = $\sqrt{0.8 \cdot 0.2} = 0.4$.
Next question: if X is the # of successes in n trials of a binomal experiment, what is std(X)??
n trials of a binomal experiment, what is
st&(X)??