Applications of the SDM Theorem.

Let X be a population with wear u and std. dev or. Fix a sample size n >30. Then (under some mild conditions) the rv

X= { all means of size-n samples from X}

15 roughly N(ju, of), where

 $\bar{\mu} = \mu$ and $\bar{\sigma} = \frac{\sigma}{\sqrt{n}}$.

So: larger n means smaller of, which means the sample means are more tightly grouped around the mean $\mu = \mu$, which means a given sample mean \overline{x} is more likely to closely reflect μ .

So: more data is quantifiably better.

SDM application #1: hypothesis testing.

Example.

A random sample of n=130 people are tested for body temperature. For this sample, the mean temperature is computed to be X=98.246, with sample st 0.733.

Test, "at the 98% level," the hypothesis that mean body temperature is 98.6.

Solution.

Let μ denote the actual mean body temperature of all people.

Write μ 0 for the commonly accepted mean body temperature μ 0=98.6.

We test the "null hypothesis"

against the "alternative hypothesis" $H_A: \mu \neq \mu_0,$

at the 98% level. Here's how.

(1) If u really does equal us then, by SDM theorem, the rv

$$\frac{\overline{X} - \overline{\mu_0}}{\overline{\sigma}} = \frac{\overline{X} - \mu_0}{\overline{\sigma} \sqrt{n}}$$

is roughly N(0,1). Now we don't know o, so we approximate it by s. So:

(a) If $\mu = \mu_0$, then the rv

$$Z = \frac{\overline{X} - \mu_0}{5/\sqrt{n}}$$
 is roughly $N(0, 1)$.

(3) From facts about MO, 1), then, we know that

That is: assuming Ho, and choosing a size-n

sample from X, there's a 98% chance that the "test statistic"

lies in the interval (-2.33, 2.33), and therefore only a 270 chance that it doesn't.

- (4) So if we compute Z, and it doesn't he in this interval that is, if 12/22.33 then we suspect that maybe μ is <u>not</u> equal to μ . In this case, we reject $H_0: \mu = \mu_0$, and <u>accept</u> $H_A: \mu \neq \mu_0$, at the 98% (evel (that is, with "at least 98% confidence").
 - (5) In the present case, we compute:

$$z = \overline{x} - \mu_0 = \frac{98.246 - 98.6}{5/\sqrt{n}} = -5.22$$

Since $|-5.22| \ge 2.33$, we reject H_0 : $\mu = 98.6$, and accept H_A : $\mu \neq 98.6$, at the 98% level.

- A) "Do not reject Ho" is not the same as "accept Ho."

 It just means there's insufficient evidence to accept it.
 - B) Also common are tests at the 95% or 99% level. Here, we compare 121 to 1.96 or 2.576 respectively.

(C) The idea is: the more confident you want or need to be in HA, the further X should be from us, so the larger 121 should be.
from 4. so the lamer 171 should be