The Sampling Distribution of the Mean (SDM).

Take some population X, pick a sample size n, and imagine computing the moon X of every size-n sample from X. This gives a new random variable

X=2 magns \overline{x} of all size-n samples from $X \S$.

Question: how is X distributed?

Answer: intuitively, we'd expect that

- (1) The mean μ of X equals the mean μ of X ("the average of the averages equals the average");
- (2) The std lev & of X is less than the std dev & of X (because averaging mitigates the effect of outliers, and therefore reduces spread).

We'd be right! Namely, we have

Theorem (SDM).

If X is just about any (not necessarily normal) rv with mean a and std dex o, and n=30, then the rv

X= {means x of all size-n samples from X}

is roughly N/h, o), where

 $\bar{\mu} = \mu$ and $\bar{\sigma} = \sigma / \sqrt{n}$.

(Cool fact this follows from the Central Limit Theorem.)

Example 1.

A set X of 1399 ALEKS Calc readiness exam scores has mean $\mu = 56.81$ and std dev. $\sigma = 22.47$. How is the set \overline{X} of all size-30 sample means from X. distributed?

 $5010t_{1000}$. By SDM, \overline{X} is roughly $N(\overline{\mu}, \overline{\sigma}) = N(\mu, \sqrt[6]{n}) = N(56.81, \sqrt[32.47]{30})$ = N(56.81, 4.10).

This is HUGE: e.g. the universe, in grams, has mass < 10^{59} . So we can't actually compute \bar{x} for every size- 30 sample from X. SDM tells us we don't have to!

Example 2 (moving towards statistical inference).

A population X has mean $\mu = 75$ and std. dev. $\sigma = 18$. What's the probability that a size-100 random sample from X has mean between 70

and 80?

Solution.

The question is: what is P(70 < X < 80)? We compute: standardize

 $P(70 < \overline{X} < 80) \stackrel{\checkmark}{=} P(70 - \overline{\mu} < \overline{X} - \overline{\mu} < 80 - \overline{\mu})$ use SM

 $\frac{1}{2}P\left(\frac{70-75}{18/\sqrt{100}} < \frac{X-\pi}{5} < \frac{80-75}{18/\sqrt{100}}\right)$

 $= P(-2.778 < \frac{X-\pi}{e} < 2.778) = 0.995 = 99.5\%.$ | look it up, use a calculator,

Example 3.

A population X has unknown mean μ and known std dev. $\sigma = 18$. (It's unlikely that we'd know or but not μ . But let's pretend, for now.) Suppose a size-100 sample from X has mean $\overline{x} = 83$.

Someone claims the true population mean μ of X is $\mu = 75$. How do you feel about this claim?

Answer: AS IF!

By Example 2, if the true mean were $\mu=75$, there would only be a 0.5% chance of a random sample mean \bar{x} being outside the

the interval (70,80).	
So if we do get such an \overline{x} , we're pretty confident that $\mu \neq 75!$	
This idea is key to statistical inference!	