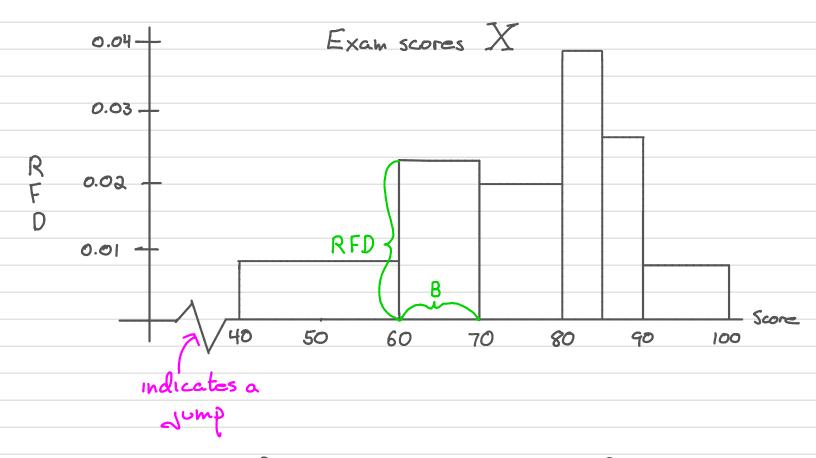
(also known as "probability density")

Given a data set X, we define relative frequency density, or RFD, by

Here:

· h is the total number of data points in X.

· B is the length of the range in question. (B stands for bin, meaning range.)


· 'frequency" means the number of data points in that range (i.e. bin).

Example: Consider this data set X of 68 exam scores.

Range	Frequency	RFD
[40,60)	11	11/(20.68) = 0.0081
[60,70)	16	16/(10.68) = 0.0235
[70,80)	14	14/(10.68)= 0.0206
[80,85]	13	13'/(5.68)= 0.0382
[85, 90)	9	9/(5.68) = 0.0265
[90, 100)	5	5/(10.68)= 0.0074
_ /		

(Note that different bins can have different lengths!)

Here's an RFD histogram:

Question: so what? Why do we bother with RFO?

Answer: in an RFD histogram, probability = area!

To see this, recall (*):

RFD = frequency.

B.n

Multiply by B:

= area of the bar over n

a given bin (see RFD = proportion (or percentage, or fraction)

histogram above) of the data that's in the given bin =

probability that a data point, selected

at random, will be in that bin.

SO: probability is about area (definite integrals, Riemann sums, etc).

Example.
In the above RFD histogram,

 $P(60 \le x < 90)$ = sum of areas of bars above [60,90) = 0.0235.10+0.0206.10+0.0382.5+0.0265.5 = 0.7645= 76.45%. selected at random, lies in [60,90)

General notes on RFD histograms:

· Bins should not overlap.

· All bins, taken together, should cover all data values.

· We can at best approximate P(a ≤ x < b) if a or b is not the endpoint of a bin.

E.g. for X as above, we might approximate

P(53 < x < 66) ~ 7:0.0081+6:0.0235 length of bin [53,60) length of bin [60,66)

= 0.1977 = 19.77 %