Conditional probability, concluded.

We saw in class last time that, for any events A and B,

where B° is the complement of B outcomes not in B3).

A generalization (Rule 8.2 in text):

Suppose B1, B2, B3, ..., Bn are nutually exclusive events. Let A be any event that can only happens. Then

P(A) = P(B₁) P(A | B₁) + P(B₂) P(A | B₂) + ... + P(B_n) P(A | B_n).

 (\bigcirc)

Example 1.

You toss a fair coin up to three times. As soon as I lands heads, you're asked a question. You win if you answer correctly and lose if you don't. If you don't win after three tosses, you look. The questions get easier: you have probability it of getting the ith one right. What's the probability of winning? Solution Consider these events.

By: first toss lands heads

Bz: third does

Certainly A can only happen if By or Bz or Bz happens. So by (),

P(A)=P(B_1)P(A1B_1)+P(B_2)P(A1B_2)+P(B_3)P(A1B_3).

Now we note:

(1) P(By) = 1/2 and P(A|B1) = 4.

(2) $P(\vec{B}_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$, since you can only get to the second toss if the first is tails. Also, $P(A|B_2) = \frac{2}{4} = \frac{1}{2}$.

(3) $P(B_3) = 1/8$, since B_3 means the first two tosses are tails and the third is heads. Also, $P(A|B_3) = 3/4$.

 $P(A) = \frac{1}{8} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{4} = \frac{4}{32} + \frac{4}{32} = \frac{3}{32} = \frac{1}{32}$ $\approx 13.67\%.$

Chapter 9: Random Variables.

A random variable (rv) is, essentially, a way of assigning numbers to outcomes.

Specifically: given an experiment with sample space 5, a random variable X is a real-valued function on 5.

(A random variable is a function, not a variable!)

Example d.

If the experiment is to roll two dice, let's write the sample space 5 in the usual way:

5 = { 11, 12, ..., 16, 21, 22, ..., 66}

We can define on rv X on 5 by X(w) = sum of two numbers, for any outcome w. E.g. <math>X(15) = 6, X(43) = 7, etc.

Example 3.

If the experiment is to shoot three free throws, let S = 2HHH, HHM, HMH, HMM, MHH, MHM, MMH, MMM8 (H for hit, M for miss). Define an rv Z on S by

 $Z(\omega)$ =#of hots, for any outcome ω . E.g. Z(M+|M)=1.

Now if X is an rv and x is a real number, we write P(X=x)

to denote the probability of the event of all outcomes we where X(w) = x.

Example 4
In Example 2 above,

P(X=6) = P(\{15,24,33,42,51\})=\\\\/36 \times 13.89\%,

 $P(X=11) = P({56,653}) = \frac{2}{36} \approx 5.56\%$, etc.

Example 5.

In Example 3 above, suppose we have an 80% free throw shooter, all of whose shots are independent. Then

Challenge questions:

$$P(Z=1)=?$$
 (Answer: 0.096)
 $P(Z=2)=?$ (Answer: 0.384)

Super-challenge:

If n free throws are taken, each with probability p of going in, what is

Plexactly - go in),

for Osren ??

(Answer: (") p" (1-p)")