
Math 6190: Introduction to Analytic Number Theory Fall 2023

Homework Assignment #6: Due Wednesday, November 1

Please do the following exercises:

Part A. Apostol Chapter 7, p. 156: Exercise 6.

Part B. Karamata’s Tauberian Theorem.

We’re going to discuss a Tauberian Theorem that has many applications, one of which is to relate
two different proofs of Dirichlet’s Theorem on Primes in Progression.

A Tauberian Theorem is, generally, one that relates different “weighted sums” of a given nonneg-
ative sequence (bn) (throughout, we assume that n runs from 1 to ∞) to each other. In today’s
episode we study Karamata’s Tauberian Theorem, which relates the behavior of

∞󰁛

n=1

bne
−anT (1)

as T → 0+ (where (an) is another nonnegative sequence), to the behavior of
󰁛

an≤x

bn (2)

as x → ∞. (Note that, in (1), each bn is weighted by exp(−anT ), while in (2), each bn is weighted
by a 1 or a 0, depending on the relative size of an to x.)

We’ll need to recall the definition of the gamma function Γ(s):

Γ(s) =

󰁝 ∞

0

e−t ts
dt

t

for Re(s) > 0.

Exercise 1.

(a) Show that the integral defining Γ(s) converges absolutely (as a Lebesgue integral or an im-
proper Riemann integral) for Re(s) > 0.

(b) Show that, for Re(s) > 0,

Γ(s+ 1) = sΓ(s). ( )

Hint: integrate by parts.

(c) Evaluate Γ(1).

(d) Use mathematical induction to show that, for n ∈ Z≥0, Γ(n+ 1) = n!.

(e) Show that, for a > 0 and Re(s) > 0,

a−s =
1

Γ(s)

󰁝 ∞

0

e−at ts
dt

t
. ( )

Hint: make a substitution into the integral on the right.



Math 6190: Introduction to Analytic Number Theory Fall 2023

We now have

Theorem 1: Karamata’s Tauberian Theorem. Let a = (an) and b = (bn) be sequences of
nonnegative real numbers. If

∞󰁛

n=1

bne
−anT ∼ AT−c (∗)

as T → 0+, for some numbers A, c > 0, then

󰁛

an≤x

bn ∼ Axc

Γ(c+ 1)

as x → ∞.

(Remark: recall that we say f(y) ∼ g(y) as y → a if limy→a(f(y)/g(y)) = 1.)

Proof. First, we need the result of the following exercise:

Exercise 2. Show that, for any polynomial P (z) on [0, 1],

∞󰁛

n=1

bne
−anTP

󰀃
e−anT

󰀄
∼ AT−c

Γ(c)

󰁝 ∞

0

e−tP
󰀃
e−t

󰀄
tc
dt

t
. (∗∗)

Some hints:

(a) Rewrite the right hand side of (∗) using ( ).

(b) Let M be a nonnegative integer. Replace T by T (1 +M) in your result from part (a) of this
exercise, to show that (∗∗) holds for the polynomial P (z) = zM .

(c) Deduce the result (∗∗) for any polynomial P on [0, 1] from what you showed in part (b) of
this exercise.

Now by limiting arguments (see Exercise 3 below), we can replace the polynomial P in (∗∗)
by any piecewise continuous function on [0, 1], and in particular by

P (z) =

󰀫
0 if 0 ≤ z < e−1;

z−1 if e−1 ≤ z ≤ 1.

Putting this P into (∗∗) gives

󰁛

e−1≤e−anT≤1

bne
−anT

󰀃
eanT

󰀄
∼ AT−c

Γ(c)

󰁝

e−1≤e−t≤1

e−t
󰀃
et
󰀄
tc
dt

t
,

which may be rewritten

󰁛

0≤an≤1/T

bn ∼ AT−c

Γ(c)

󰁝 1

0

tc
dt

t
=

AT−c

cΓ(c)
=

AT−c

Γ(c+ 1)
.
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(The last step follows from ( ).) Putting x = 1/T gives the desired result.

Exercise 3. Say something about the limiting arguments alluded to in the above proof. You
don’t need to fill in all the details, but at least carefully state some theorem or other result, and
explain why that result applies here.

Back to Dirichlet’s theorem. Recall that our proof of this theorem amounted to showing that

( )
󰁛

p≤x
p≡h(mod k)

log p

p
∼ 1

φ(k)
log x

as x → ∞. (Certainly Dirichlet’s Theorem follows from this.) See Theorem 7.3 in Apostol, where

a somewhat stronger version of ( ), involving a big oh term, is given. However the version given

here suffices, and is more appropriate for the following discussion.

Some other proofs of Dirichlet’s Theorem entail showing that

∞󰁛

p=1
p≡h(mod k)

log p

ps
∼ 1

ϕ(k)(s− 1)
( )

as s → 1+. The idea of the following exercise is to show that the two approaches to Dirichlet’s
Theorem are closely related.

Exercise 4.

(a) Explain why ( ) directly implies Dirichlet’s Theorem.

(b) Use Karamata’s Tauberian Theorem to show that ( ) implies ( ). Hint: in ( ), put
s = 1 + T .

Remark: a converse to Karamata’s Theorem exists, and may be used to show that, conversely,

( ) implies ( ).


