
Math 6190: Introduction to Analytic Number Theory Fall 2023

Homework Assignment #5: Due Monday, October 23

Part I: Apostol Chapter 6, pp. 143–145. Exercises 13, 15, 17.

Notes on Exercise 13: (i) Although it’s not specified in the exercise, you should assume that
G is abelian. (ii) It might actually be better to look at the sum

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πikℓ/n,

where ℓ is an arbitrary integer between 0 and n− 1.

Exercise 13. Let f1, f2, . . . , fm be characters of a finite group G of order m, and let a be an
element of G of order n. Theorem 6.7 shows that each number fr(a) is an nth root of unity. Prove
that every nth root of unity occurs equally often among the numbers f1(a), f2(a), . . . , fm(a). [Hint:
evaluate the sum

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πik/n

in two different ways to determine the number of times e−2πik/n occurs.]

SOLUTION: On the one hand, we have

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πikℓ/n =

m󰁛

r=1

n󰁛

k=1

󰀓
fr(a)e

−2πiℓ/n
󰀔k

.

By standard formulas for a geometric sum, and the facts that e−2πiℓ = 1 and fr(a
n) = 1 (the latter

because a has order n), the sum on k, on the right, equals 0 unless fr(a)e
−2πiℓ/n = 1, in which

case the sum equals n. Consequently,

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πikℓ/n =

m󰁛

r=1

󰀫
n if fr(a) = e2πiℓ/n,

0 if not

= n ·
󰀏󰀏{1 ≤ r ≤ m : fr(a) = e2πiℓ/n}

󰀏󰀏. ( )

On the other hand,

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πikℓ/n =

n󰁛

k=1

e−2πikℓ/n

m󰁛

r=1

fr(a
k).

The sum on r equals m if ak = e and 0 otherwise, by Theorem 6.13. But a has order n, so the
only integer k between 1 and n for which ak = e is the integer k = n. So

m󰁛

r=1

n󰁛

k=1

fr(a
k)e−2πikℓ/n = e−2πinℓ/n ·m = m. ( )

Comparing ( ) with ( ) gives

󰀏󰀏{1 ≤ r ≤ m : fr(a) = e2πiℓ/n}
󰀏󰀏 = m

n
.

That is, each nth root of unity e2πiℓ/n occursm/n times among the numbers f1(a), f2(a), . . . , fm(a).



Math 6190: Introduction to Analytic Number Theory Fall 2023

Exercise 15. Let χ be any nonprincipal Dirichlet character mod k. Prove that for all integers
a < b we have 󰀏󰀏󰀏󰀏

b󰁛

n=a

χ(n)

󰀏󰀏󰀏󰀏 ≤
1

2
ϕ(k).

SOLUTION: Break the set of integers S = {a, a + 1, . . . , b − 1, b} up into intervals of length k,
plus whatever is left over at the tail end on the right. That is, write

b󰁛

n=a

χ(n) =
M−1󰁛

r=0

a+(r+1)k−1󰁛

n=a+rk

χ(n) +
b󰁛

n=a+Mk

χ(n)

for some nonnegative integer M . (If M = 0 then the above sum on r is empty.) Now every set of
k consecutive integers contains exactly one representative of each equivalence class mod k. That
is, for any integer r,

󰁱
a+ rk, a+ rk + 1, . . . , a+ (r + 1)k − 1

󰁲
= Z/kZ.

So every such set of integers must contain exactly one representative of each element of (Z/kZ)∗.
But then the sum of χ(n), over such a set of integers n, must be zero, by Theorem. So our above
formula for the sum from a to b gives

b󰁛

n=a

χ(n) =
b󰁛

n=a+Mk

χ(n).

The sum on the right contains at most ϕ(k) nonzero terms. If it contains ≤ ϕ(k)/2 nonzero terms,
then we’re done, since each such term has absolute value 1, so the sum of such terms, in absolute
value, is ≤ ϕ(k)/2. If the sum from a +Mk to b has more than ϕ(k)/2 nonzero terms, then the
sum from b + 1 to a + (M + 1)k − 1 has at most that many nonzero terms. But in this case, we
note that

b󰁛

n=a+Mk

χ(n) =

a+(M+1)k−1󰁛

n=a+Mk

χ(n)−
a+(M+1)k−1󰁛

n=b+1

χ(n) = 0−
a+(M+1)k−1󰁛

n=b+1

χ(n),

and since the remaining sum on the right is bounded in absolute value by ϕ(k)/2 (as it has at
most ϕ(k)/2 nonzero terms, each of absolute value one), so is the sum on the left, and were done.

Exercise 17. An arithmetic function f is called periodic mod k if k > 0 and f(m) = f(n)
whenever m ≡ n (mod k). The integer k is called the period of f .

(a) If f is periodic mod k, prove that f has a smallest positive period k0, and that k0|k.
(b) Let f be completely multiplicative and periodic, let k be the smallest positive period of f .
Prove that f(n) = 0 if (n, k) > 1. This shows that f is a Dirichlet character mod k.

SOLUTION:

(a) Under the stated conditions, the set of positive periods of f is nonempty because it contains
k. So by the well-ordering principle, this set has a smallest positive element k0. To show that
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k0|k, suppose not. Then we can write k = k0q+ r where 0 < r < k0. Now let m and n be any two
integers that are congruent mod r. Then there is an integer ℓ such that

m = n+ ℓr = n+ ℓ(k − k0q).

But then
f(m) = f(n+ ℓ(k − k0q)) = f(n+ ℓk − ℓk0q) = f(n+ ℓk) = f(n),

so f has period r. This contradicts the fact that k0 is the smallest positive period of f . So we
must have k0|k.
(b) Let f and k be as stated. Let n be an integer with f(n) ∕= 0 and (n, k) = d > 1. Write n = da
and k = db for integers a and b, with b < k (since d > 1). We have f(n) = f(da) = f(d)f(a), and
since f(n) ∕= 0, we have f(d) ∕= 0. Then for any integer m, we have

f(d)f(m) = f(dm) = f(dm+ k) = f(dm+ db) = f(d)f(m+ b)

or, dividing by f(d), f(m) = f(m + b). This contradicts the minimality of k. So we must have
f(n) = 0 for (n, k) > 1.

Part II. (A) Evaluate (as a real number) the series

L(1,χ) =
∞󰁛

n=1

χ(n)

n
,

where χ is the unique nontrivial Dirichlet character mod 3. Hint: after writing the series out
explicitly, consider the integral

󰁕 1

0
t3n(1 − t) dt. Note that tables of values of Dirichlet characters

are given on p. 139 of Apostol.

SOLUTION: We have

∞󰁛

n=1

χ(n)

n
= 1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+ · · · ...

=
∞󰁛

n=0

󰀕
1

3n+ 1
− 1

3n+ 2

󰀖
=

∞󰁛

n=0

󰀕󰁝 1

0

t3n dt−
󰁝 1

0

t3n+1 dt

󰀖
=

∞󰁛

n=0

󰁝 1

0

t3n(1− t) dt

=

󰁝 1

0

∞󰁛

n=0

t3n(1− t) dt =

󰁝 1

0

1− t

1− t3
dt =

󰁝 1

0

dt

t2 + t+ 1
=

󰁝 1

0

dt

(t+ 1
2
)2 + 3

4

=
2√
3
arctan

󰀕
1 + 2t√

3

󰀖󰀏󰀏󰀏󰀏
1

0

=
2√
3

󰀕
arctan

√
3− arctan

1√
3

󰀖
=

π

3
√
3
.

(B) Repeat (A) above for the unique real-valued, nonprincipal Dirichlet character mod 5. The
series should end up as an integral of a rational function. Do the best you can with this integral:
leave as is, evaluate numerically or, if possible, evaluate explicitly.
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SOLUTION: We have

∞󰁛

n=1

χ(n)

n
=

1

1
− 1

2
− 1

3
+

1

4
+

1

6
− 1

7
− 1

8
+

1

9
+ · · · ...

=
∞󰁛

n=0

󰀕
1

5n+ 1
− 1

5n+ 2
− 1

5n+ 3
+

1

5n+ 4

󰀖
=

∞󰁛

n=0

󰁝 1

0

󰀃
t5n − t5n+1 − t5n+2 + t5n+3

󰀄
dt

=

󰁝 1

0

∞󰁛

n=0

t5n
󰀃
1− t− t2(1− t)

󰀄
dt =

󰁝 1

0

󰀃
1− t− t2(1− t)

󰀄
dt

1− t5
=

󰁝 1

0

(1− t2) dt

1 + t+ t2 + t3 + t4
.

I don’t know how to do the latter integral, but Mathematica tells me it’s about 0.430409.


