
Math 6190: Introduction to Analytic Number Theory Fall 2023

Homework Assignment #2: Solutions to Selected Exercises

Part I. Apostol Chapter 2 (pp. 46–51): Exercises 3, 4, 5, 14, 29.

Exercise 3. Prove that
n

ϕ(n)
=

󰁛

d|n

µ2(d)

ϕ(d)
. ( )

SOLUTION: It’s readily seen that a quotient of multiplicative functions is multiplicative. So
the left side of ( ) is multiplicative. Further, the right side of ( ) equals (µ2/ϕ) ∗ u, and µ,
ϕ, and u are all multiplicative, so (µ2/ϕ) ∗ u is too, by Theorem 2.14. Also, both sides of ( )
equal 1 if n = 1. So it’s enough to prove ( ) for n = pα, where p is a prime and α ∈ Z+.

Now
pα

ϕ(pα)
=

pα

pα(1− 1/p)
=

1

1− 1/p
.

On the other hand, since µ(pk) = 0 for k ≥ 2,

󰁛

d|pα

µ2(d)

ϕ(d)
=

α󰁛

k=0

µ2(pk)

ϕ(pk)
=

µ2(1)

ϕ(1)
+

µ2(p)

ϕ(p)
= 1 +

1

p− 1
=

p

p− 1
=

1

1− 1/p
,

and we’re done.

Exercise 4. Prove that ϕ(n) > n/6 for all n with at most 8 distinct prime factors.

SOLUTION: We have
ϕ(n)

n
=

󰁜

p|n

󰀕
1− 1

p

󰀖

by Theorem 2.4. Now the fewer factors there are on the right side, the larger that right side is,
since each factor is < 1. Also, the larger p is, the larger 1− 1/p is. So the right side is at least as
large as the product you get when p ranges over the first 8 primes. So

ϕ(n)

n
≥

󰀕
1− 1

2

󰀖󰀕
1− 1

3

󰀖󰀕
1− 1

5

󰀖󰀕
1− 1

7

󰀖󰀕
1− 1

11

󰀖󰀕
1− 1

13

󰀖󰀕
1− 1

17

󰀖󰀕
1− 1

19

󰀖
≈ 0.171024 >

1

6
,

and we’re done.

Exercise 5. Define ν(1) = 0 and for n > 1 let ν(n) be the number of distinct prime factors of n.
Let f = µ ∗ ν and prove that f(n) is either 0 or 1.

SOLUTION: The statement f = µ ∗ ν is equivalent, by Möbius inversion, to the statement
ν = f ∗ u. So it suffices to show that, for some function f with f(n) always equal to 0 or 1, we
have

ν(n) = f ∗ u(n) =
󰁛

d|n

f(n).

The function f defined by

f(n) =

󰀫
1 if n is prime,

0 in not

1



Math 6190: Introduction to Analytic Number Theory Fall 2023

works, since f(n) equals 0 or 1, and

󰁛

d|n

f(d) =
󰁛

p|n

1 = ν(n).

Exercise 14. Let f(x) be defined for all x in 0 ≤ x ≤ 1 and let

F (n) =
n󰁛

k=1

f

󰀕
k

n

󰀖
; F ∗(n) =

n󰁛

k=1
(k,n)=1

f

󰀕
k

n

󰀖
.

(a) Prove that F ∗ = µ ∗ F.
(b) Prove that

µ(n) =
n󰁛

k=1
(k,n)=1

e2πki/n.

SOLUTION: (a) Just as we saw in class on 9/6, in proving that
󰁓

d|n ϕ(d) = n (Thm. 2.2), the

set {k/n : 1 ≤ k ≤ n} equals the disjoint union ∪d|n{k/d : 1 ≤ k ≤ d; (k, d) = 1}. So

F (n) =
󰁛

d|n

d󰁛

k=1
(k,d)=1

f

󰀕
k

d

󰀖
=

󰁛

d|n

F ∗(d) = u ∗ F ∗(n)

where u(n) = 1 for all n. So, by Möbius inversion, F ∗ = u−1 ∗ F = µ ∗ F .

(b) follows from (a) with f(x) = e2πix. Indeed, in this case,

n󰁛

k=1
(k,n)=1

e2πki/n =
n󰁛

k=1
(k,n)=1

f

󰀕
k

n

󰀖
= F ∗(n) = µ ∗ F (n) =

󰁛

d|n

µ(d)
n󰁛

k=1

f

󰀕
kd

n

󰀖

=
󰁛

d|n

µ(d)
n󰁛

k=1

e2πikd/n =
󰁛

d|n

µ(d)
n󰁛

k=1

󰀃
e2πid/n

󰀄k
=

󰁛

d|n

µ(d) ·
󰀫
n if d = n,

0 if d < n,

= µ(n),

the next-to-last equality because

n󰁛

k=1

ak =

󰀫
n if a = 1,
a(an−1)

a−1
if a ∕= 1,

and because e2πid = 1 for d an integer.
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Exercise 29. Prove that there is a multiplicative arithmetic function g such that

n󰁛

k=1

f((k, n)) =
󰁛

d|n

f(d)g

󰀕
n

d

󰀖
,

for every arithmetic function f ((k, n) denotes the gcd). Deduce that

n󰁛

k=1

(k, n)µ((k, n)) = µ(n).

SOLUTION: Since (k, n) is a divisor of n,

n󰁛

k=1

f((k, n)) =
󰁛

d|n

n󰁛

k=1
(k,n)=d

f(d) =
󰁛

d|n

f(d)
n󰁛

k=1
(k,n)=d

1.

Now (k, n) = d, for 1 ≤ k ≤ n, iff k = dr where 1 ≤ r ≤ n/d and (r, n/d) = 1. There are ϕ(n/d)
such k’s, so

n󰁛

k=1

f((k, n)) =
󰁛

d|n

f(d)ϕ

󰀕
n

d

󰀖
.

This implies that

n󰁛

k=1

(k, n)µ((k, n)) =
󰁛

d|n

dµ(d)ϕ

󰀕
n

d

󰀖
= n

󰁛

d|n

µ(d)
ϕ(n/d)

n/d
= µ(n);

the latter equality follows from Mobius inversion and the fact that

ϕ(n)

n
=

󰁛

d|n

µ(d)

d
.

Part II. Let δ(n) denote the number of positive divisors of n.

(1) (a) Express δ(n) in the form 󰁛

d|n

f(n)

for an appropriate function f .

(b) Prove that 󰁛

d|n

µ(d)δ(n/d) = 1.
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(c) Prove that
󰁛

d|n

log d =
δ(n)

2
log n.

(Here and throughout, log denotes the natural logarithm.) Note: this does not depend on
part (a) or (b) of this problem.

(d) Using parts (a,b,c) above, prove that

log n = −
󰁛

d|n

µ(d)δ(n/d) log d.

SOLUTION: (a)

δ(n) =
󰁛

d|n

u(n)

where u(n) = 1 for all n.

(b) By part (a), δ = u ∗ u, so by Möbius inversion, u = µ ∗ δ, which is the desired result.

(c) Note that, for any divisor d of n, log n = log(d · (n/d)) = log d+ log(n/d). So

δ(n) log(n) = log(n)
󰁛

d|n

1 =
󰁛

d|n

log(n) =
󰁛

d|n

󰀃
log d+ log(n/d)

󰀄
=

󰁛

d|n

log d+
󰁛

d|n

log(n/d)

=
󰁛

d|n

log d+
󰁛

d′|n

log d′ = 2
󰁛

d|n

log d,

(for the second-to-last equality, we put d′ = nd), from which the result follows.

(d). Let ℓ(n) = log n and ψ(n) = 1
2
δ(n) log n. By part (c) above, we have ℓ ∗u = ψ, so by Möbius

inversion, we have ℓ = µ ∗ ψ, meaning

log n =
󰁛

d|n

µ(d)ψ(n/d) =
1

2

󰁛

d|n

µ(d)δ(n/d) log(n/d)

=
1

2

󰀕󰁛

d|n

µ(d)δ(n/d) log n−
󰁛

d|n

µ(d)δ(n/d) log d

󰀖

=
1

2

󰀕
log n

󰁛

d|n

µ(d)δ(n/d)−
󰁛

d|n

µ(d)δ(n/d) log d

󰀖

=
1

2
log n− 1

2

󰁛

d|n

µ(d)δ(n/d) log d,

the last step by part (b). The result follows immediately.

4



Math 6190: Introduction to Analytic Number Theory Fall 2023

(2) (a) Express δ in the form δ = u ∗ u for an appropriate multiplicative function u.

(b) Use the previous part of this problem to conclude that δ is multiplicative.

(c) Prove that
󰁛

d|n

δ(d)3 =

󰀕󰁛

d|n

δ(d)

󰀖2

.

Hint: it suffices to show that this is true for n a power of a prime. (Explain why.)

SOLUTION: (a) We saw above that δ = u ∗ u for u the unit function (u(n) = 1 ∀n).
(b) Certainly u is multiplicative, so δ is by Theorem 2.14.

(c) Since δ is multiplicative, so is δ3, and thus so is
󰁓

d|n δ
3(d) = δ3 ∗ u(n). Similarly,

󰁓
d|n δ(d) =

δ ∗ u(n) is, and therefore so is (
󰁓

d|n δ(d))
2. So it suffices to show that the desired identity holds

for prime powers.

But, for p prime and k = 0, 1, 2, . . .,

󰁛

d|pk
δ3(d) = δ3(1) + δ3(p) + δ3(p2) + · · ·+ δ3(pk) = 1 + 23 + 33 + · · ·+ (k + 1)3 =

k+1󰁛

i=0

i3

=
(k + 1)2(k + 2)2

4
=

󰀕k+1󰁛

i=0

i

󰀖2

=

󰀕
δ(1) + δ(p) + δ(p2) + · · ·+ δ(pk)

󰀖2

=

󰀕󰁛

d|pk
δ(d)

󰀖2

,

as required.

Part III. 1. Show that A = {arithmetic functions} is a commutative ring with unity, under
addition and Dirichlet multiplication.

SOLUTION: It’s clear that A is closed under addition of functions, and that addition in A is
commutative, associative, has a zero element, given by 0(n) = 0 for all n, and has additive inverses.

Further, A is clearly closed under the Dirichlet product, which is commutative and associative
by Theorem 2.6, and which clearly distributes over addition. Also, A has multiplicative identity
given by I (I(n) = [1/n] for all n). That should be it, right?

2. Show that A is an integral domain. Hint: given a nonzero arithmetic function f , let

zf = min{n ∈ Z+|f(n) ∕= 0}.

SOLUTION: Assume that f and g asre nonzero. Then for zf and zg as described,

f ∗ g(zfzg) =
󰁛

d|zf zg

f(d)g(zfzg/d) =
󰁛

d|zf zg

d≥zf

f(d)g(zfzg/d),

since f(d) = 0 for d < zf . The first term in the sum on the right equals f(zf )g(zg), which is
nonzero by definition of zf and zg. All subsequent terms are zero, since

d > zf ⇒ zfzg/d < zg ⇒ g(zfzg/d) = 0.

So f ∗ g(zfzg) = f(zf )g(zg), which is nonzero by definition of zf and zg, so f ∗ g is nonzero.
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