Math 6190: Introduction to Analytic Number Theory Fall 2023

Homework Assignment #2: Solutions to Selected Exercises
Part I. Apostol Chapter 2 (pp. 46-51): Exercises 3, 4, 5, 14, 29.

Exercise 3. Prove that

2
n p*(d)
—— = : ()
p(n) d; o(d)

SOLUTION: It’s readily seen that a quotient of multiplicative functions is multiplicative. So
the left side of (@) is multiplicative. Further, the right side of (@) equals (u?/¢) * u, and p,
¢, and u are all multiplicative, so (u?/¢) * u is too, by Theorem 2.14. Also, both sides of (¢pd)
equal 1 if n = 1. So it’s enough to prove (@) for n = p®, where p is a prime and o € Z,.

Now
(0%

Pt P* _ 1
pp)  pr(1=1/p) 1-1/p
On the other hand, since p(p*) = 0 for k > 2,

pAd) =08 (1) | #Ap) 1 p 1
ZsO(d) _,; p*) (1) e) p—1 p—1 1-=1/p’

d|p®

and we’re done.

Exercise 4. Prove that ¢(n) > n/6 for all n with at most 8 distinct prime factors.

SOLUTION: We have (n) .
P _
no 11 (1 p>

pln

by Theorem 2.4. Now the fewer factors there are on the right side, the larger that right side is,
since each factor is < 1. Also, the larger p is, the larger 1 — 1/p is. So the right side is at least as
large as the product you get when p ranges over the first 8 primes. So

I IENE IR

and we’re done.

Exercise 5. Define v(1) = 0 and for n > 1 let v(n) be the number of distinct prime factors of n.
Let f = p v and prove that f(n) is either 0 or 1.

SOLUTION: The statement f = p * v is equivalent, by Mobius inversion, to the statement
v = f*u. So it suffices to show that, for some function f with f(n) always equal to 0 or 1, we

have
v(n) = fru(n)=>_ f(n).

din
The function f defined by

1 if n is prime,
-

0 in not
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works, since f(n) equals 0 or 1, and

ST @) =S 1= v(n).

dn p|n

Exercise 14. Let f(z) be defined for all z in 0 < 2 <1 and let
- k u k
- ) ) = “).
,Z:f(") (n)= > f<n>

(a) Prove that F* = ux* F.
(b) Prove that

E eZﬂ'kl/n.
k=1
(km)=1

SOLUTION: (a) Just as we saw in class on 9/6, in proving that 3, ¢(d) = n (Thm. 2.2), the
set {k/n: 1<k < n} equals the disjoint union Ug,{k/d: 1 < k < d;(k,d) =1}. So
L[k
Fn)=3_ 3. f(é) =Y F'(d) =uxF*(n)
din

where u(n) = 1 for all n. So, by Mobius inversion, F* =u™! « F = ux F.
(b) follows from (a) with f(z) = e*™*. Indeed, in this case,

Z il = () — o F(n) = 3 p(d Zf(kd)

(k il (k ) dln
— ZM Z 2mikd/n __ Z ,u = de/n Z ’u {n ifd= n,
dln k= dln k:l din if d < n,

= p(n),
the next-to-last equality because
= i n ifa=1
a = a(a™—1)
= - ifa+#1

2mid

and because e“™* =1 for d an integer.
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Exercise 29. Prove that there is a multiplicative arithmetic function g such that

>tk = 3 1o

dn

for every arithmetic function f ((k,n) denotes the ged). Deduce that

n

> (knu((k,n)) = p(n).

k=1

SOLUTION: Since (k,n) is a divisor of n,

n

S IEm =Y X f@ =Y @ 3 1

d|n din k=1
(Ic n) d (k,n)=d

Now (k,n) =d, for 1 < k <mn, iff k = dr where 1 <r <n/d and (r,n/d) = 1. There are p(n/d)

such ks, so n
; F((kn)) = f(d)<,0<%>.

din
This implies that

n

>k (k) = S dutave( ) = S ) 2D = o

k=1 dln dn

the latter equality follows from Mobius inversion and the fact that

n d
—)ZZ%)

dln

Part II. Let §(n) denote the number of positive divisors of n.

(1) (a) Express §(n) in the form

> fn)

din
for an appropriate function f.
(b) Prove that

Zu d(n/d) = 1.
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(c) Prove that
Zl gd= logn
dln

(Here and throughout, log denotes the natural logarithm.) Note: this does not depend on
part (a) or (b) of this problem.

(d) Using parts (a,b,c) above, prove that

logn = — Zu d(n/d)logd.

din
SOLUTION: (a)

dn
where u(n) =1 for all n.
(b) By part (a), § = u * u, so by Mobius inversion, v = u * §, which is the desired result.
(c) Note that, for any divisor d of n, logn = log(d - (n/d)) = logd + log(n/d). So

d(n)log(n) = log(n Zl = Zlog Z log d + log(n/d)) Zlogd—l— Zlog n/d)

dn d|n dn dln dln

= Zlogd—i—Zlogd’ = ZZlogd,

din d'|n dln

(for the second-to-last equality, we put d’ = nd), from which the result follows.
(d). Let £(n) =logn and ¥(n) = £6(n) logn. By part (c) above, we have £ u = 1), so by Mobius

inversion, we have ¢ = p % 1), meaning

logn—z,u Y(n/d) = Zu d(n/d)log(n/d)

din d\n
(Z,u d(n/d) logn—Zu d(n/d) logd)
dn dn
(lognZM d(n/d) — Z/“‘ d(n/d) logd>
dln dln

logn——Zg d(n/d)logd,

din

the last step by part (b). The result follows immediately.
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(2) (a) Express d in the form 6 = u % u for an appropriate multiplicative function w.

(b) Use the previous part of this problem to conclude that ¢ is multiplicative.

(c) Prove that )
> 6(d)* = (Z 6(d)> .
dn

dn
Hint: it suffices to show that this is true for n a power of a prime. (Explain why.)

SOLUTION: (a) We saw above that 6 = u % u for u the unit function (u(n) =1 Vn).

(b) Certainly u is multiplicative, so ¢ is by Theorem 2.14.

(c) Since 4 is multiplicative, so is ¢°, and thus so is 3, 6°(d) = 6° x u(n). Similarly, 3, d(d) =
6 * u(n) is, and therefore so is (3_,,, (d))?. So it suffices to show that the desired identity holds
for prime powers.

But, for p prime and £ =0,1,2,.. .,
k+1

S 8(a) D) +0%(p) +0° (") + -+ @) =1+22 43+ (h+ 1) =) 4
=0

dlp*

_ (e ”Zk Lk (Z ) = (30 + 0+ 807+ 4 5(pk))2 -(X 5(d))2,

i=0 dlp*

as required.

Part III. 1. Show that A = {arithmetic functions} is a commutative ring with unity, under
addition and Dirichlet multiplication.

SOLUTION: It’s clear that A is closed under addition of functions, and that addition in A is
commutative, associative, has a zero element, given by 0(n) = 0 for all n, and has additive inverses.
Further, A is clearly closed under the Dirichlet product, which is commutative and associative

by Theorem 2.6, and which clearly distributes over addition. Also, A has multiplicative identity
given by I (I(n ) [1/n] for all n). That should be it, right?

2. Show that A is an integral domain. Hint: given a nonzero arithmetic function f, let
zy =min{n € Z|f(n) # 0}.
SOLUTION: Assume that f and g asre nonzero. Then for z; and 2, as described,

fxg(zrzg) Z f(d)g(zfz,/d) = Z f(d)g(zf2,/d),
d|zgzg dlzfzg

deJc

since f(d) = 0 for d < z;. The first term in the sum on the right equals f(z)g(z,), which is
nonzero by definition of z; and z,. All subsequent terms are zero, since

d>zp = 2p24/d < 2y = g(272,/d) = 0.

So f*xg(zrz4) = f(27)g(2,), which is nonzero by definition of z; and 2,4, so f * ¢ is nonzero.
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