
Math 6190: Introduction to Analytic Number Theory Fall 2023

Homework Assignment #1: Solutions to Selected Exercises

Part I. Apostol Chapter 1 (pp. 21–23): Exercises 2, 10, 11, 16, 18, 19, 20.

Exercise 2. Prove that, if (a, b) = (a, c) = 1, then (a, bc) = 1.

SOLUTION: Suppose (a, b) = (a, c) = 1. If (a, bc) > 1, then a and bc have a common factor
d > 1. Since d|a implies (d, b) divides (a, b), and since (a, b) = 1 by assumption, We must have
(d, b) = 1. But then, since d|bc, we must have d|c, by Theorem 1.5 (Euclid’s Lemma). But then
d|a and d|c, contradicting the fact that d > 1 and (a, c) = 1.

So it must be that (a, bc) = 1.

Exercise 10. Given x and y, let m = ax + by, n = cx + dy, where ad − bc = ±1. Prove that
(m,n) = (x, y).

SOLUTION: Under the given assumptions note that, if d|x and d|y, then d|(ax + by) and
d|(cx + dy); that is, d|m and d|n. So d|(m,n). So (x, y)|(m,n).

On the other hand, the equations m = ax + by and n = cx + dy have solution

x =
dm− bn

ad− bc
= ±(dm− bn); y =

−cm + an

ad− bc
= ±(−cm + an),

since we’re assuming that ad − bc = ±1. So d|m and d|n implies that d|x and d|y. That is,
(m,n)|(x, y).

Since (x, y)|(m,n) and (m,n)|(x, y), and since greatest common divisors are positive, we conclude
that (m,n) = (x, y).

Exercise 11. Prove that n4 + 4 is composite if n > 1.

SOLUTION: We will show that, for any k ∈ Z+ and r ∈ {0, 1, 2, 3, 4}, (5k+ r)4 + 4 is composite
as long as it’s not the case that k = 0 and r = 1. This will be enough because any n > 1 can be
written as n = 5k + r for such a k and such an r.

First we consider the case r = 0. We note that

(5k)4 + 4 = (2− 10k + 25k2)(2 + 10k + 25k2),

so we’re done in this case. (It’s readily checked that neither factor on the right can equal 1.)

On the other hand, suppose r 6= 0. We have

(5k + r)4 + 4 = 4 + 625k4 + 500k3r + 150k2r2 + 20kr3 + r4

= (r4 + 4) + 5(125k4 + 100k3r + 30k2r2 + 4kr3).

Clearly, this is larger than 5 as long as k 6= 0, and is divisible by 5 as long as r4 + 4 is. But
14 + 4 = 5, 24 + 4 = 20, 34 + 4 = 85, and 44 + 4 = 260, so we’re done.

Exercise 16. Prove that if 2n − 1 is prime, then n is prime.

SOLUTION: If n = ab where a, b > 1, then

2n − 1 = (2ab)− 1 = (2a)b − 1 = (2a − 1)(1 + 2a + (2a)2 + · · ·+ (2a)b−1),

1



Math 6190: Introduction to Analytic Number Theory Fall 2023

by the formula for a finite geometric sum.

Exercise 18. If m 6= n compute the gcd (a2
m

+ 1, a2
n

+ 1) in terms of a. [Hint: let An = a2
n

+ 1
and show that An|(Am − 2) if m > n.]

SOLUTION: If m > n, then

Am − 2 = a2
m − 1 = (a2

m−1

+ 1)(a2
m−1 − 1).

The term in parentheses on the far right can further be factored, as (a2
m−2

+ 1)(a2
m−2 − 1). We

may continue factoring in this manner, to get

Am − 2 = a2
m − 1 = (a2

m−1

+ 1)(a2
m−2

+ 1)(a2
m−3

+ 1) · · · (a2n + 1)(a2
n − 1).

The term on the far right is An. So An|(Am − 2), say Am = qAn + 2. Now let d = (Am, Am).
Then d|Am and d|An, so d|2, so d = 1 or d = 2. But d 6= 2 since An and Am are odd. So
d = (An, Am) = 1.

Exercise 19. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34,... is defined by the recursion
formula an+1 = an + an−1, with a1 = a2 = 1. Prove that (an, an+1) = 1 for each n.

SOLUTION: We prove this by induction on n. It’s certainly true for n = 1 (1, 1) = 1. Now
assume it’s true for n = k. Then (ak+1, ak+2) = (ak+1, ak+1 + ak). But for general integers r and
s, (r, r + s) = (r, s), since d|r and d|s ⇔ d|r and d|(r + s). So

(ak+1, ak+2) = (ak+1, ak+1 + ak) = (ak+1, ak) = (ak, ak+1) = 1

by the induction hypothesis, and we’re done.

Exercise 20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as
a linear combination of 826 and 1890.

SOLUTION:

1890 = 826 · 2 + 238

826 = 238 · 3 + 112

238 = 112 · 2 + 14

112 = 14 · 8 + 0.

So

(826, 1890) = 14 = 238− 112 · 2 = 238− (826− 238 · 3) · 2
= 238 · 7− 826 · 2 = (1890− 826 · 2) · 7− 826 · 2
= 1890 · 7− 826 · 16.

Part II.
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(a) Use mathematical induction to prove that, for any positive integer n, the product of any n
integers of the form 4` + 1 (where ` is a positive integer) is itself of the form 4` + 1.

SOLUTION: It’s true for n = 1. Now assume it’s true for n = k. If m1,m2, . . . ,mk,mk+1 ∈ Z
are of the form 4` + 1, then by induction, there exist integers r, s ∈ Z such that

m1m2 · · ·mk ·mk+1 = (m1m2 · · ·mk) ·mk+1 = (4r + 1)(4s + 1) = 4(4s + r + s) + 1;

that is, the desired result is true for n = k + 1 as well. So we’re done by induction.

(b) Show that there are infinitely many primes of the form 4` + 3 (for ` a positive integer). You
may want to use the result of part (a) of this exercise.

SOLUTION: Suppose there are only finitely many such primes, call them p1, p2, . . . , pK , in
ascending order. Let

M = 4p1p2 · · · pk − 1 = 4(p1p2 · · · pK − 1) + 3.

Then clearly M > 1 and M is of the form 4` + 3. Every integer > 1 is divisible by a prime, so M
must be divisible by one of the primes pj, for some 1 ≤ j ≤ K. (M is of the form 4` + 3, so it
can’t be divisible only by primes of the form 4`+ 1, because then it too would be of that form, by
part (a).) But if pj divides M then, since pj also divides 4p1p2 · · · pk, it must divide

M − 4p1p2 · · · pk = −1,

a contradiction. So there must be infinitely many primes of the given form.
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