More characters.

(A) Orthogonality revisited.

Recall the orthogonality relations for a finite abelian group $G = 2 a_1, a_2, ..., a_n 3$ with character group $\hat{G} = 2 f_1, f_2, ..., f_n 3$, where f_3 is the principal character:

 $\frac{1}{n} \sum_{k=1}^{n} f_i(a_k) f_j(a_k) = \delta_{ij}^{n} \qquad (OR_3)$ $(1 \le i, j \le n) \quad and$

 $\frac{1}{n} \sum_{k=1}^{n} f_k(a_i) f_k(a_i) = J_{ij} \qquad (OR_a)$ $(1 \le i, j \le n).$

(Jij = 1 if i=j, O if not).

Again, (OR1) says & n-1/2 fi: 1 = i = n & is an orthonormal basis for the space of functions on G.

what about (ORa)? Well, note that any aieG defines a character on \hat{G} (i.e. an element of \hat{G}) by $ai(f_k) = f_k(ai)$

(aie G, $f_k \in \hat{G}$).

So (OR2) says: En-1/2 ai: 15 is n 3, considered as characters on G, forms an orthonormal basis for the space of functions on G.

(B) Dirichlet characters

Define a Dirichlet character Z mod K is an extension to Z of a character f on $(Z/kZ)^{\times}$, where the extension is defined by

$$\mathcal{K}(n) = \mathcal{K}_f(n) = \begin{cases} f(\bar{n}) & \text{if } (n,k) = 1, \\ 0 & \text{if } not. \end{cases}$$

Note that:

(a) A Dirichlet character mod k is periodic, with period k.

Proof: Suppose $m, n \in \mathbb{Z}$ satisfy m = n + lk for some $l \in \mathbb{Z}$. Then (m,k) = (n+lk,k) = (n,k). If (m,k) = (n,k) = 1, then $\mathcal{K}(m) = f(\bar{n}) = f(\bar{n}) = \mathcal{K}(n)$, while if (m,k) = (n,k) > 1, then $\mathcal{K}(m) = 0 = \mathcal{K}(n)$.

(b) There are $\varphi(k)$ distinct Dirichlet

characters mod k.

Proof: $|(Z/kZ)|^{\times} = \rho(k)$, so $|(Z/kZ)^{\times}| = \rho(k)$.

Moreover, extensions Z_{Γ} and Z_{Γ} of distinct characters f and g on $(Z/kZ)^{\times}$ must be distinct, since $Z_{\Gamma}(n) = Z_{G}(n) \forall n = f(\bar{n}) = g(\bar{n}) = g(\bar{n})$

(c) Dirichlet characters are completely multiplicative. Proof: if (m,k)=(n,k)=1, then $\mathcal{K}(mn)=f(\overline{m}n)=f(\overline{m})f(\overline{n})=\mathcal{K}(m)\mathcal{K}(n)$. If (m,k)>1 or (n,k)>1, then either $\mathcal{K}(m)=0$ or $\mathcal{K}(n)=0$, so $\mathcal{K}(m)\mathcal{K}(n)=0$. Moreover, in this case, (mn,k)>1, so $\mathcal{K}(mn)=0=\mathcal{K}(m)\mathcal{K}(n)$.

(d) Any completely multiplicative function \mathcal{X} on \mathcal{X} with period k, and such that $\mathcal{X}(n)=0$ for (n,k)71, is a Dirichlet character mod Proof: for such a X, define a function fon $(\mathbb{Z}/n\mathbb{Z})^{\times}$ by $f(\bar{n}) = \mathcal{K}(n)$. One checks that f is a character, and that $\mathcal{K} = \mathcal{K}f$.

Now write & Kg, K2, ..., Kp(k) & for the set of Dirichlet characters mod k, with Kg the principal Dirichlet character (i.e. 2 = 2,). Then (ORa), with the fact that $\chi_{\Gamma}(m)=0$ for (m,k)>1 and $l\leq r\leq p(k)$, yield

Theorem 6.16.

If (n, k) > 1, then

 $\frac{\wp(k)}{\sum \mathcal{K}_{r}(m)} \frac{\mathcal{K}_{r}(n)}{\mathcal{K}_{r}(n)} = \frac{\wp(k)}{\wp(k)} \text{ if } m \equiv n \pmod{k},$ r = 1 O if not.

(C) Sums of Dirichlet characters.

Theorem 6.17

Let X be a nonprincipal Dirichlet character mod k. Let f be nonnegative, continuously differentiable, and decreasing on [xo, or) for some XGEIR. Then for XOSXSY, we have

(a) $\sum_{x < n \leq y} \mathcal{X}(n) f(n) = O(f(x))$ for x≥xo,

independently of y.

Moreover, if him f(x)=0, then

x>00

(b)
$$\sum_{n=1}^{\infty} \chi(n) f(n)$$
 converges, and for $\chi \neq \chi_{6}$

(c)
$$\sum_{n \leq x} \chi(n) f(n) = \sum_{n=1}^{\infty} \chi(n) f(n) + O(f(x)).$$

Proof Let $A(x) = \sum_{n \leq x} \mathcal{X}(n)$. Then A(x) = O(1) by

Apostol Ch. 6, Exercise 15 (see HW5.)

So by ASF, we have

 $\sum_{x < n \leq y} \mathcal{X}(n) f(n) = f(y) A(y) - f(x) A(x) - \int_{x}^{y} A(t) f'(t) dt$ $= O(f(y)) + O(f(x)) + O\left(\int_{x}^{y} - f'(t) dt\right)$

= O(f(y)) + O(f(x)) + O(f(x) - f(y)) = O(f(x)),

because f is decreasing, so $f(y) \leq f(x)$. This proves (a).

If $f(x) \rightarrow 0$ as $x \rightarrow \infty$, then (a) proves that the partial sums $\sum \mathcal{X}(n)f(n)$

n ≤ N

form a Cauchy sequence, which proves (b).

Finally, if lim f(x) =0, then

 $\sum_{n \leq x} \chi(n) f(n) = \sum_{n=1}^{\infty} \chi(n) f(n) - \sum_{n>x} \chi(n) f(n),$

with both series on the right converging by part (b). Moreover,

 $\sum_{n>x} \chi(n)f(n) = \lim_{y\to\infty} \sum_{x \leftarrow n \leq y} \chi(n)f(n),$

which is O(f(x)) by part (a). So part (c) is proved.

Applying Thm 6.26 with f(x) = /x, x, and \sqrt{x} respectively gives

Thm. 6.18 If X is nonprincipal mod k and x21, then

(a)
$$\sum_{n \leq x} \frac{\chi(n)}{n} = \sum_{n=1}^{\infty} \frac{\chi(u)}{n} + O(1/x)$$

(b)
$$\sum_{n \leq x} \frac{\chi(n) \log n}{n} = \sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n} + O\left(\frac{\log x}{x}\right);$$

(c)
$$\sum_{n \leq x} \frac{\chi(n)}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} + O(1/\sqrt{x}).$$