Characters, continued.

Throughout, G is a finite abelian group with identity e.

Define $\hat{G} = \{ \text{characters on } G \}$ $= \{ \text{homomorphisms } f : G \rightarrow C \} \}.$

Our goal for today is to show that

Lemma.

Let G'be a proper subgroup of G.

let a E G | G'have indicator h in G'

(i.e., h= min \(^2\) me Z+: a \(^m \in G'\). Let

G"= 2 xa1: x ∈ G, 0 ≤ 2 < h }

(G" is a group by Thm. 6.6). Then |G" |= |G' |.h.

Proof. Let G, G, a, h, G" be as stated.

It will suffice to prove the following:

(a) Each fe G'extends in h distinct ways to a character on G".

(b) If $f, g \in G'$ and $f \neq g$, then no extension of f equals an extension of g.

(c) Any FEG" equals one of the extensions of part (a).

Proof of (b): this is clear because, if an extension f of fequals an extension of of and g to G'agree, so f=g.

Proof of (a). Let $f \in G'$.

Since $f(a^h) \in L^*$, we know that $f(a^h)$ has

h distinct h^{th} roots $R_0, R_1, ..., R_{h-1}$.

Then $R_1 = f(a^h)$ $(0 \le j < h)$. (*)

For each $0 \le j < h$, define a function f_j on G'' by $f_j(xa^l) = f(x)R_j^l$ $(x \in G', 0 \le l < h)$.

To prove part (a), it will suffice to show that

(i) f, \neq for 0 \leq j, k < h.

(ii) f is a homomorphism from G" to C,

for 0 \leq j \rightarrow h.

Proof of (i): If 1 + k, then

 $f_j(a) = R_j \neq R_k = f_k(a)$.

Proof of (ii): Let $x,y \in G'$ and $0 \le l, m < h$. Write $l+m = hq+\Gamma$ with $0 \le r < h$. Then, for $0 \le l \le h$,

 $f_{i}(xa^{i}ya^{m}) = f_{i}(xya^{l+m}) = f_{i}(xya^{hq+r})$ $=f(xy(a^h)^2a^r)=f(x)f(y)f(a^h)^2R_1^r$ $\int_{y}^{4} = f(x)f(y)(R_{1}^{h})^{q}R_{1}^{r} = f(x)f(y)R_{1}^{hq+r}$ = $f(x)f(y)R_1^{l+m} = (f(x)R_1^l)(f(x)R_1^m)$ = $f_1(xa^n)f_1(ya^m)$.

So f, is a howeverphism from G" to C. So Ta) is proved.

Proof of (c): If $F \in \widehat{G}$, then for $x \in G'$ and $0 \le l \le h$,

 $F(xa^{d}) = F(x)F(a)^{l} = F(x)R_{l}^{l}$, where $R_{l} = F(a)$ is an h^{th} root of $F(a^{h})$ (because $R_{l}^{h} = F(a)^{h} = F(a^{h})$). So $F = f_{l}$ for some j, where f is the restriction of F to G'. (Clearly $f \in G'$.) So (c) is proved.

Next, we have:

Theorem 6.8. $|\hat{G}| = |G|$.

Proof For G'a proper subgroup of G and a EG | G' of indicator h in G, write (G; a) for the group

G"= \(\text{\text{xe}} \, \text{\$\text{\$\infty} \} \)

described above.

Define a nested sequence of subgroups
$$G_1 = G_2 = G_3 = \dots = G_t = G$$
 of G recursively, as follows.

(1) $G_1 = \{e\}$.

(2) If G= G then t=1. If not then:

(3) Let a & G \ G1; let G2 = < G3; a1 ?. If $G_2 = G$, then t = 2. If not then:

(4) Let a 2 E G \ Ga ; let G3 = < G2, a2 %

And so on. Each Gr has at least one more element than Gr-1, so eventually

Write he for the indicator of ar in Gr (15r st-1). Then, by Thm. 6.6 of last $|G| = |G_t| = |G_{t-1}| h_{t-1} = |G_{t-2}| h_{t-2}h_{t-1}$ $= ... = |G_j| h_1 h_2 \cdots h_{t-1}$ $= h_1 h_2 \cdots h_{t-1}.$

On the other hand, by the above Lemma,

$$|\hat{G}| = |\hat{G}_{t}| = |\hat{G}_{t-1}| h_{t-1} = |\hat{G}_{t-2}| h_{t-2}h_{t-1}$$

$$= ... = |\hat{G}_{3}| h_{1}h_{2} \cdots h_{t-1}.$$

But | Gg |= 1 because the only nonzero homomorphism on ses is given by f(e)=1.

1Ĝ |= h, hz...h = 1G1, and we're done.

