A. Distribution-of-primes result #2:

Theorem 1.13.

E /pm diverges.

Proof.

Spz not: then I ke Z+ with

 $\sum_{m=k+l}^{\infty} / p_m \leq 1/2. \tag{*}$

We'll derive a contradiction, as follows. Let Q= pipz...px. We'll show that

 $\sum_{N=1}^{\infty} \frac{1}{1+NQ} \leq \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m}\right)^t \cdot (\times \times)$

The left side diverges by the integral test. But by (x), the right side is

 $\leq \sum_{i=1}^{\infty} \frac{1}{2^{i+1}} < \infty$.

Contradiction. So our theorem must be true.

To prove (*x) note that, if we expand out

then every integer that's a product of exactly t (not necessarily distinct) primes pm, with m > k+1, appears as a denominator.

$$\left(\frac{1}{2}\right)^{3} = \left(\frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \cdots\right)^{3}$$

$$= \frac{1}{11^3} + \frac{1}{13^3} + \frac{1}{15^3} + \frac{1}{11^2 \cdot 13} + \frac{1}{11^2 \cdot 15} + \frac{1}{13^2 \cdot 15} + \cdots)$$

But for any nE Z+, I+nQ is such a product, for some te Z, since I+nQ is relatively prime to those pm's with I = m ≤ k. (Each of the latter pm's divides Q but not I.)

Conclusion: each summand on the left side of (xx) appears as a summand in the expansion of the right side.

non-negative, whence (xx) holds, whence our contradiction, whence our theorem.

B. The Euclidean algorithm.

This is a method for determining (a, b) without needing the prime factorizations of a and b.

Lemma: the division aborithm
(= Thm. 1.14).

If a and b are integers and b>0, then I a unque pair of integers q and r such that

Proof

Given such a and 6, let $S = \{a-bx : x \in \mathbb{Z} \text{ and } a-bx > 0\}$

By the well-ordering property of 12 (the natural numbers), 5 has a least element

$$r = a - bq. \qquad (x^3)$$

Then certainly a = botr. Also, r 30 since r & 5 by definition.
To show that r < b, suppose not. Then

That is, r-b is an element of 5 that's less than 5, contradicting the minimality of r.

So the desired q and r exist. Uniqueness is an exercise.

Now suppose we want to find (264, 2520).

we divide r,=264 into ro=2520, using the division algorithm:

Next, divide r2= 144 into r4= 264:

Divide 14 into 13:

Since $r_5 = 0$, we conclude that $r_4 = (r_0, r_1)$, i.e. 24 = (264, 2520).

In general, divide $r_0 = b$ into $r_1 = a$, then divide the remainder r_2 into r_3 ; divide the new remainder r_3 into r_2 , ... stop when $r_{n+1} = 0$. Then $r_n = (r_1, r_2)$. This is the Euclidean algorithm (= Thm. 1.15.)

It works in general because we have a sequence of steps

The fact that the ris are decreasing and zO means eventually $r_i = 0$. Say $r_{n+1} = 0$? then by induction, we show that (a) $r_n | r_j$ and $r_n | r_o$; (b) $r_n = r_o \times + r_j y$ for x, y integers. So

$$r_n = (r_0, r_1) = (a, b).$$

